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with the Vélib’ system of Paris.

CÔME ETIENNE and OUKHELLOU LATIFA

November 21, 2012

Abstract:
The bicycle sharing systems are increasingly numerous nowadays. These

transportation systems generate sizable transportation data the mining of which
can reveal the underlying urban phenomenons linked to city dynamics. This pa-
per introduces a statistical model to automatically analyze bike sharing system
trips data. This model will introduce a latent variable to partition the stations
in terms of their temporal dynamics over the day with respect to the number of
rented and returned bikes. This generative model is based on Poisson mixtures
and introduces a station scaling factor that handles the discrepancy between the
stations activities. Eventually, the difference of dynamics between week days
and week-end will also be taken into account. This model will find the latent
factors that shape the geography of trips. The results produced by such an ap-
proach give insights on the relationships between stations neighborhoods type
(the amenities it offers, its sociology, ...) and the generated mobility pattern. In
other words, the proposed method enables the discovery of regions of different
functions, that induce specific usage patterns in BSS data. These potentials are
demonstrated through an in-depth analysis of the results obtained on the Vélib’
large-scale bike sharing system of Paris.

Key words: Bike-sharing systems, count data, clustering, generative model,
model-based clustering

1 Introduction

The growth of population and of urban concentrations, as well as the increase of
nuisance factors such as pollution, noise, congestion, greenhouse gas emissions,
have urged the development of new sustainable mobility strategies in urban
areas. Public authorities need to deploy urban mobility policies to organize
differently passenger mobility, thus lessening the negative impact of mobility
demands. One possible way adopted by cities and regions to face these problems
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is the promotion of soft modes of transport such as walking and cycling, which
are economical, healthy, less pollutant and more equitable [26, 6, 11].

The implementation of Bike Sharing Systems (BSSs) is one of the urban
mobility measures proposed in many cities all over the world as an additional
mean of sustainable intermodal transport. These last years, different BSSs have
been implemented in European cities. The main motivation behind this concept
is to provide users with free or rental bicycles especially suited for short distance
trips in urban areas, thus reducing traffic congestion, air pollution and noise. In
Europe BSSs are most popular in southern European countries, where a cycling
tradition does not exist. BSSs become a modern mode of urban mobility. Due to
their incontestable success [8, 6], more and more cities want to supply this mode
of mobility in order to present themselves as sustainable and modern. In France,
since the implementation of the BSS in Lyon in 2005 (called Vélo’v), bicycle
sharing schemes have been launched in twenty French cities, among which one of
the most large-scale bicycle share scheme, implemented in Paris (called Vélib’).

A good knowledge of BSS usage and performance is the key of its success.
This knowledge can be transferred afterwards to cities aiming to incorporate
BSSs. To do this, the analysis of the data collected by BSSs operators and cities
is instructive as shown in several studies like [14, 4, 19]. A statistical analysis of
the collected data on such a scheme contributes to leverage the development of
new and innovative approaches for a better understanding of urban mobility, as
well as of the use and performance of BSSs. The design of BSSs, the adjustment
of pricing policies, the improvement of service level of the system (redistribution
of bikes over stations) can benefit from this kind of analysis [9, 20, 1]. It also
helps sociologists and planners to apprehend the users mobility patterns within
the cities.

However, the data collected on such systems are frequently sizable. It is
therefore difficult to gain knowledge from them without the help of automatic
algorithms that extract spatio-temporal patterns and give a synthetic view of
the information. Many data sets collected on human mobility can indeed help
to recover underlying urban phenomenons linked to city dynamics. Human
mobility can be captured through GPS trajectories of vehicles or pedestrians
[31], cell phone usage [27], as well as data related to bicycle sharing systems as it
is the case here. This paper deals with a statistical model that will automatically
cluster BSS stations according to their usage profile. The performed analysis
will help in understanding the BSS stations attractiveness, in relation with city
geography and sociology. In fact, the proposed method enables the discovery of
regions of different functions, that induce specific usage pattern in BSS data.
The model proposed here shares therefore some objectives with those highlighted
in [30], i.e. finding functional regions in a city through the mining of mobility
data (taxi trips in this application). However, the specific nature of the transport
mode analyzed here (which is mainly used for short distance trips) requires the
development of a particular model more fitted to these data. The clustering
of the BSSs stations is closely related to the city functionalities (transport,
leisure, employments) and can benefit a variety of applications, including urban
planning and location choosing for a business as cited by the previous authors.
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But, the analysis of the results provided by the model will furthermore give
insights into the relations between the kind of neighborhood of the stations (the
type of amenities it offers, its sociology, ...) and their associated usage profiles.
The crossing of the model results with social and economical data is to this
end carried out, and will show the close links between these two aspects and
the use of bike sharing transport mode. This may at the end help for bikes
redistribution planning and for designing new BSSs.

In an attempt to handle the challenges above, this paper has the following
main contributions. A dedicated model based on count series clustering is devel-
oped in order to highlight spatio-temporal patterns in the BSS usage data. The
model uses trips data to describe the station usage. A generative mixture model
is proposed and an EM algorithm is derived to learn the model parameters and
to perform the station clustering. The formalization of the model is general
enough to take into account specific hypotheses related to the BSS case study.
The proposed approach is validated through extensive investigations carried out
on data collected on the Paris large-scale bicycle sharing scheme (Vélib’).

This paper is thus organized as follows, in Section 2 we present a survey
of previous works in relevant literature. The Vélib’ case is detailed in Section
3. Section 4 is devoted to the proposed statistical model based upon count
series clustering. Results are then given and discussed in Section 5, prior to a
conclusion in Section 6.

2 Related work

Mobility patterns are traditionally analyzed through human and social sciences
frameworks. The data used for such studies are collected either from sensing
devices or through observational mechanisms, e.g. surveys. But, the emergence
of information and communication technologies, as well as the advent of new
observations and tracking capabilities, have boosted the availability of sizable
spatio-temporal data. The availability of this kind of datasets contributes to
emphasize the importance of the development of novel approaches based upon
engineering and computer sciences. Indeed, tools for processing spatio-temporal
data are needed for a better understanding of mobility patterns of travelers and
goods, as well as of the use and performances of transportation systems.

Several requirements have motivated previous studies dealing with BSSs:
improvement of existing systems, growth of knowledge on urban mobility, and
more generally developing the BSSs of tomorrow. The design of new BSSs can
benefit from the experience gathered on existing systems the analysis of which
can help to better understand their usage. The long-term goal is to be able,
before and after BSS implementation, to optimize station planning in terms of
both urban planning, mobility needs and redistribution capacities of the system.

One of the main issues raised by users in recent surveys concerns the avail-
ability of bikes: users are confronted to empty stations when renting bikes, and
full stations when returning them back. Redistribution of bikes is indeed nec-
essary in most bicycle sharing schemes to compensate the uneven demand of
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users by relocating the bikes among the stations, thus ensuring a good quality
of service of the system. This is generally performed by redistribution trucks
driving around the city moving bikes between stations. Several research works
address the issues related to the optimization of bikes redistribution policies.
The reader can refer to [2, 7, 24] for more information on this topic.

Other works from computer science or signal processing domains have been
proposed to study the existing BSSs. The proposed approaches differ according
to the kind of data they use and the goal they aim to solve. The collected
data on existing systems could correspond to station state statistics such as
station occupancy over the day, or over several time frames. They could also
be of origin and destination (OD) matrix form, assuming available records of
BSS trips every day, i.e. for each trip, the location of station and the starting
time, the destination station and the stopping time are recorded. Two main
topics have been investigated, namely clustering and prediction. Whereas the
clustering topic aims to uncover spatio-temporal patterns in the BSS usage
by partitioning the stations into different clusters having a similar usage, the
prediction topic focuses on developing models able to predict the state of the
stations (the number of bikes per station) or more globally the state of the
network over time.

The reader interested by the prediction problem can refer to [14], [5], [17]
and [23]. In the first study, the problem of forecasting near-term station usage
is addressed by using Bayesian Networks the performance of which are analyzed
with respect to factors such as time of day and station activity. The same prob-
lem is addressed in [17], using a time series analysis based on an ARMA process.
Borgnat et al. predict the global rental volume using the cyclostationarity of
the temporal series and finally Michau et al. attempt to relate, through a parsi-
monious statistical regression model, social, demographic and economical data
of the various neighborhoods of the city with the actual number of trips made
from and to the different parts of the city.

In all the clustering studies carried out until now, the bicycle sharing stations
are grouped according to their usage patterns, thus highlighting the relation-
ships between time of day, location and usage. The proposed approaches differ
according to how they describe the stations usages and the clustering techniques
they use. The first attempt in this line of work is due to Froehlich et al. They
have analyzed in two studies a dataset from Barcelona Bicing system by means
of clustering techniques. In [15], a mixture of Gaussian is used to cluster the sta-
tions according to a feature vector build from station state statistics, whereas in
[14], two clusterings are compared both being performed by hierarchical aggre-
gation. The first one use activity statistics derived from the evolution of station
state while the second use directly the number of available bicycles along the
day.

Other studies like [19] use similar clustering techniques to study the effect of
changing the user-access policy in the London Barclays cycle hire scheme. The
authors investigate how the change affected the system usage throughout the
city via both spatial and temporal analysis of station occupancy data. Another
approach proposed by [4] analyzes both temporal and spatial usage trends of the
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Figure 1: Number of recorded trips per hour and day of the week during April
2011 with respect to the type of subscription (long: one year, short: one day).

Lyon Vélo’v BSS. To this end two solutions are investigated, the first one is based
on a graph clustering algorithm (Modularity optimization, [25]) that uncover
communities of stations that exchange bikes in a preferential way. The second
proposal aims to cluster flows of activity between stations that exhibit similar
exchange dynamics using a K-means algorithm. In this paper, we investigate the
analysis of the Vélib’ system through the daily recorded trips during a month.
Before detailing the proposed approach, a description of the Vélib’program is
presented in the next section.

3 The Vélib’ case

3.1 Historical

Since 2001, the city of Paris deploys urban policies aiming to favor public trans-
portation and soft modes of transport such as bicycle, walking ... . Within this
context, the Vélib’ bike sharing system, has been launched in July 2007. Vélib’
is operated as a concession by Cyclocity, a subsidiary company of the French
advertising corporation JCDecaux. 7000 bikes were initially distributed on 750
fixed stations. Five years ago, the Vélib’ system has been extended to reach 20
000 bikes spread out over 1 208 fixed stations and 224 000 annual subscribers
with an averaged number of 110 000 travels each day. Vélib’ is a large-scale
scheme, the second largest BSS in the world after the BSS launched in China.
Vélib’ is available mainly in Paris intramuros but some stations are located in
the suburbs of Paris. Vélib’ offers a non stop service (24/7). Each Vélib’ station
is equipped with an automatic rental terminal. The whole network includes 40
000 docking points (between 8 and 70 per station). The bikes are locked to
the electronically controlled docking points. Users can purchase a short-term
subscription, over a day or a week, or a long-term subscription over a year. The
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Figure 2: Average number of trips per hour during a week day (plain blue line)
and a week-end day (dashed red line).

subscription allows an unlimited number of rentals, the first half hour (or the
first 45 minutes for long-term subscription) of every individual trip being free.
Registration of users is required. The bicycles can be hired at any of the stations
and at any time and returned back at any other station and at any time.

Despite the boost in bike use in Paris that have followed the implantation
of the BSS the cycling modal share is still very low compared to other cities
in Europe. Analyzing modal splits [6] in Paris can give hints about the local
cycling culture. Cycling share is still very low in Paris (3%) but has been on the
increase in the last years. The modal part of BSS is about 2%. Public transport
has an estimated modal share of 40% while car share is estimated to 21% [1].
Even if France has not a strong cycling culture (the primary purpose of cycling
is for leisure), people seem to be very enthusiastic with bike public plans. Bike
is viewed as environmentally friendly by 62% of people in France [1].

3.2 General view of the system

The aim here is to perform some general statistics to highlight global trends
in the usage of Vélib’. Figure 1 shows the whole number of recorded Vélib’
trips per hour and day of the week during a month with respect to the type of
subscription (day or year). This figure reveals that the Vélib’ usage is closely
linked not only to the hour and the day it occurs but also to the kind of day
(weekday or weekend) and to the type of subscription.

A first significant difference in Vélib’ usage between short-term and long-
term subscribers can be noticed. This difference is reflected in terms of the
usage volume: most of the Vélib’ trips are generated by long-term subscribers
even if the difference between the two subscriptions is less important during the
weekend. This remark can be linked to the fact that short-term subscriptions
are mainly associated to leisure while Vélib long-term subscriptions tend to
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Figure 3: Average activity of stations (number of actions: departure or arrival)
per hour with respect to the distance of the stations from the center of Paris
(“Les Halles”).

cover daily mobility routines of users.
This figure shows also a difference in Vélib’ usage during the weekdays and

the weekend. A cyclostationarity pattern can be seen in the Vélib’ usage during
the weekdays. Three peaks of weekday usage can indeed be distinguished in
Figure 2: the two most significant correspond to the commutes (8am and 18am)
while the third one which appears at 12am, can be associated to the lunch
break. As can be expected, the morning peak usage disappears during the
weekend, where the Vélib’ usage gradually increases to reach a maximum in
the afternoon. One can notice that Friday corresponds to the peak of usage
among the weekdays. These temporal trends of BSS usage can be informative
on sociological characteristics of the city. Considering the study carried out
by [14] on the Barcelona Bicing system, some sociological differences between
the two cities can indeed be highlighted. The lunch peak occurring at 2pm on
Barcelona Bicing data occurs at 12am for Vélib’ data, reflecting thus the late
lunch culture of Spain (resp. the earlier lunch culture of France). Secondly,
Friday is the least active day in Barcelona Bicing usage (resp. the most active
one in Vélib usage).

Simultaneously with those temporal trends in the use of Vélib bicycles, spa-
tial trends closely linked to geographical aspects of the city can also be identified.
Figure 3 shows the average activity of stations per hour, quantified through the
number of rented and returned bikes with respect to the distance from the cen-
ter of Paris. It is clear that the mean activity of a station is more significant if
the station is located near the center of Paris. Furthermore, the duration and
distance of trips can also be used as indicators of the Vélib’ usage. As shown
in Figure 4, half of the Vélib’ trips last twelve minutes. This can be linked to
the pricing policy of the Vélib’ (free for half an hour). It can be noticed that
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Figure 4: Histogram of trips length in kilometers (left) and of trips duration in
minutes (right).

the trips recorded with null distances correspond to loop travels: users rent and
return back bikes in the same station.

These first statistics carried out in this section show the global dynamic of
the Vélib’ system. The next section will present the statistical model proposed
to automatically extract thiner details from BSS data .

4 Count series clustering

The approach undertaken here follows the line of work initiated by [15] and [19],
but with a new tool tailored to fit the specificity of the data. These two previous
studies propose to cluster the stations of a BSS with respect to their temporal
dynamics over the day, in order to find spatio-temporal patterns which describe
the activity of the city. The clusters produced by this kind of approaches group
the stations based on their usage patterns. It is then possible to map the
obtained clusters and see how usage relates to the city geography and sociology.

In [15] the clustering is illustrated on Bicing data from Barcelona. The data
correspond to station state statistics in form of free slots, available bikes over
several time frames and other station activity statistics derived from stations
state raw data scraped every 5min. The clustering is then performed with a
Gaussian Mixture model estimated by an EM algorithm. In [14] and [19] each
station is described by a time series vector which corresponds to the normalized
available bicycle (NAB) value of the station along the day. Each element of the
feature vector is therefore equal to the number of available bicycles divided by
the station size (the 95th percentile of the sums of free slots and available bikes).
These time series are then smoothed using a moving average and clustered using
a hierarchical agglomerative algorithm [12] p. 552, with a cosine distance. Such
approaches have demonstrated that spatio-temporal patterns can be extracted
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from usage data.
The approach proposed here aims also to find spatio-temporal pattern in

the BSS usage data, but differs from these previous propositions with respect
to several points. First, to describe the stations dynamics we do not use the
stations states but count time series derived from trips data. Such a description
of the stations dynamics is significantly ampler than the one used in these two
previous studies since informations on arrivals and departures are available. In
particular, it may differentiate situations where a lot of bikes come and leave
from the station from the cases where there is no activity at the station, whereas
the descriptions built from station state data cannot account for such a difference
since in both cases the state of the station is unchanged. The proposed model
will also deal with the differences of temporal dynamics observed during week
days and week-end days (as observed in Figure 2), whereas the features used in
the previous studies do not describe these differences. Eventually, the proposed
model will handle the specific nature of the observations, i.e. that they are
counts and therefore belong to N.

To achieve these goals, we propose a generative mixture model and derive
the associated EM algorithm to estimate the parameters of the model and the
clustering. This work adopts therefore the model-based clustering framework
[22, 13] with specific hypotheses related to the phenomena under analysis that
we discuss in the next paragraphs. But we first describe more formally the
stations features vectors construction and introduce the notations used in the
rest of the paper.

4.1 Trips data and count time series

The dataset used here corresponds to one month of trips data (April 2011) and
contains the following informations for each trip: station of departure, time of
departure, station of arrival, time of arrival, type of user subscription (day /
year). From roughly 2 500 000 trips recorded in April 2011, the following counts
statistics are derived:

• Xout
sdh : Number of bikes leaving from station s ∈ {1, . . . , S} during day

d ∈ {1, . . . , D} and hour h ∈ {1, . . . , 24};

• Xin
sdh : Number of bikes coming to station s ∈ {1, . . . , S} during day

d ∈ {1, . . . , D} and hour h ∈ {1, . . . , 24}.

The aggregation at 1 hour was used to produce the counts since it gives a good
trade-off between resolution of details and fluctuations [4]. These two time
series of counts are then concatenated in a vector Xsd describing the arrival and
departure activity of station s during day d

Xsd = (Xin
sd1, . . . , X

in
sd24, X

out
sd1 , . . . , X

out
sd24). (1)

These activity vectors can then be arranged in a tensor (or three-way array) of
size N ×D×T , with N the number of stations (1 185 in the Vélib’ case), D the
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number of available days in the dataset (30 for this study) and T the length of
the description vector, which is 48 here since non-overlapping windows of one
hour are used to compute the arrivals and departures counts.

4.2 Generative Model

Since the observed data are counts, we propose to use Poisson mixtures to build
the generative model. Poisson mixtures have already been used successfully
in several applicative domains and can take different forms depending on spe-
cific assumptions [28, 29, 18, 16]. Like these previous works we will consider
that conditionally on the clusters the observed variables are drawn from Pois-
son distributions, but we will adapt the model to our needs by making further
hypotheses on the model parametrization. The generative model that we pro-
pose uses two additional sets of variables. The first a classic one corresponds to
indicator variables (denoted by Zs) which encode the cluster membership of the
stations and take their values in Z =

{
{0, 1}K :

∑
k Zsk = 1

}
, these variables

are not observed and must be recovered. The variables in the second set denoted
by Wd are also indicator variables, but they are attached to the days and encode
the differences between week and week-end days (which present very different
usage profiles visible in Figure 1 and 2). These variables take their value in
W =

{
{0, 1}2 :

∑
lWdl = 1

}
and we consider that they are observed. Using

these two sets of variables the following generative model is then assumed for
the observed data:

Zs ∼ M(1, π)

Xsd1 ⊥⊥ . . . ⊥⊥ XsdT | {Zsk = 1,Wdl = 1}
Xsdt|{Zsk = 1,Wdl = 1} ∼ P(αsλklt),

with P(λ) the Poisson distribution of parameter λ and M(1, π) the Multino-
mial distribution of parameter π. This generative model assumes therefore that
knowing the cluster of the station and the cluster of the day the departure and
arrival counts of each hour are independent and that they follow a Poisson dis-
tribution of parameter αsλklt. The parameter αs is a scaling factor specific to
station s and will capture the global activity of the station. The parameters
λklt describe the temporal variations of departure / arrival and are specific to
each station clusters and day type (week / week-end). For the parameters to be
identifiable we must have constraints on the λ. The following constraints will
ensure that the model is identifiable up to the permutation undetermination
unavoidable in all mixture models.

s.t.
∑
l,t

Dlλklt = DT, ∀k ∈ {1, . . . ,K}, (2)

with Dl =
∑
dWdl the number of days in day cluster l. The conditional inde-

pendence assumption relates this model to the naive Bayes model, and can be
criticized; it is nonetheless a good first approximation. The Poisson hypothesis
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is natural for count data and furthermore it enables the introduction of the
station scaling factor αs [28, 16]. These scaling factors are necessary to produce
interesting results since we may observe a lot of activity variations between sta-
tions with a clear centrality effect (see Figure 3). Using these assumptions the
conditional density of an activity vector xsd can be derived as:

f(xsd|{Zsk = 1,Wdl = 1}) =
∏
t,l

p(xsdt;αsλklt)
Wdl =

∏
t,l

(
(αsλklt)

xsdt

xsdt!
exp−αsλklt

)Wdl

,

with p(., λ) the density of a Poisson distribution of mean λ. Therefore, the
log-likelihood of such a model is given by:

L(Θ; X|W) =
∑
s

log

∑
k

πk
∏
d,t,l

p(Xsdt;αsλklt)
Wdl

 (3)

The maximization of this quantity can be achieved by an EM type algorithm
described in the next section.

4.3 EM Algorithm

The EM algorithm [10, 21] is a popular algorithm for maximum likelihood esti-
mation in statistics when the problem involves missing values or latent variables.
It is an iterative algorithm that alternates between maximizing a lower bound
of the log-likelihood and updating the bound. This bound is classically obtained
from the completed likelihood which introduces the latent variable Z:

Lc(Θ; X,Z) =
∑
s,k

Zsk log

πk∏
d,t,l

p(Xsdt;αsλklt)
Wdl

 (4)

During the E step of the algorithm the conditional expectation of this function
over Z with respect to the current parameter values is computed. This expec-
tation will provide the lower bound of the log-likelihood that will be maximized
during the M step. This expectation is given by:

E[Lc(Θ; X,Z)|X,Θ(q)] =
∑
s,k

tsk log

πk∏
d,t,l

p(Xsdt;αsλklt)
Wdl

 , (5)

where the tsk are the a posteriori probabilities (given the current parameters

estimate Θ(q)) of each cluster given by:

tsk =
π
(q)
k

∏
d,t,l p(Xsdt;α

(q)
s λ

(q)
klt)

Wdl∑
k π

(q)
k

∏
d,t,l p(Xsdt;α

(q)
s λ

(q)
klt)

Wdl

. (6)

These quantities are computed during the E step of the algorithm. During the
M step, this expectation is maximized with respect to the parameters in order
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ALGORITHM 1: EM algorithm to estimate the models parameters and the clus-

tering

Input: Data X: tensor of size (N ×D × T ), W indicators of day clusters: matrix of
size (D × 2), desired number of cluster K

Output: Estimated parameters Θ = (α, λ, π), posterior probabilities tsk
Initialization ;
for each station s in {1, . . . , N} do

compute the stations scaling factor ;
αs =

1
DT

∑
d,tXsdt ;

end
for each cluster k ∈ {1, . . . ,K} do

initialize π̂
(0)
k ;

end
for each station s ∈ {1, . . . , N}, cluster k ∈ {1, . . . ,K} and day cluster l ∈ {1, 2} do

initialize λ̂
(q)
klt;

end
repeat

E step : compute the a posteriori probabilities;
for each station s ∈ {1, . . . , N} and cluster k ∈ {1, . . . ,K} do

tsk =
π
(q)
k

∏
d,t,l p(Xsdt;αsλ

(q)
klt

)Wdl∑
k π

(q)
k

∏
d,t,l p(Xsdt;αsλ

(q)
klt

)Wdl
;

end
M step : update the parameters ;
for each cluster k ∈ {1, . . . ,K} do

π̂
(q)
k = 1

N

∑
s tsk;

end
for each station s ∈ {1, . . . , N}, cluster k ∈ {1, . . . ,K} and day cluster l ∈ {1, 2}
do

λ̂
(q)
klt =

1∑
s tskαs

∑
dWdl

∑
s,d tskWdlXsdt;

end

until convergence;

to increase the likelihood. This maximization, detailed in Appendixes A and B,
leads to the following update formulas:

α̂s =
1

DT

∑
d,t

Xsdt , π̂k =
1

N

∑
s

tsk (7)

λ̂klt =
1∑

s tskαs
∑
dWdl

∑
s,d

tskWdlXsdt (8)

The update formulas have natural interpretations, the scale factor of station
s, αs is simply given by the average of its activity vectors along all the time
frames and days. Since they do not depend on the tsk, they can be computed
only one time. The proportions πk are classically updated by the mean of the a
posteriori probabilities of each cluster. The λklt are given by a weighted mean
of the activity of cluster k stations in day cluster l and time frame t. Eventually,
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Figure 5: Maps of stations positions for clusters “Railway stations” and “Parks”.
The map background presents the subway and railway lines, the parks and the
Seine. The areas of the dots representing the stations are proportional to the
station scaling factor αs. Each cluster map is completed with the temporal
profile of the cluster, the parameters λklt are to this end arranged according to
departure/arrival and week/week-end. The quantiles 0.05 and 0.95 of the total
population of stations activity (scaled by their average activity) are also shown
in order to highlight the temporal specificities of each cluster.
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Figure 6: Map of stations positions for cluster “ Housing”. The map background
presents the density of inhabitants per hectare. The areas of the dots repre-
senting the stations are proportional to the station scaling factor αs (Sources
”Recensement 2008”, ”Base permanente des équipements”, Insee).

the E and M steps are iterated to build an EM algorithm (see Algorithm 1) that
will converge towards a local maxmimum of the log-likelihood.

5 Results

The proposed algorithm was tested on the Vélib’ April 2011 dataset, with a
varying number of clusters. A good trade-off between complexity of the clus-
tering and interpretability was found for K = 8. We therefore analyze in more
details the clustering found for this value of K in this section. A first way to
investigate the nature of the different clusters found is to look at their tempo-
ral profiles given by the parameters λ of the model. In order to give a clear
overview of these profiles we organize them according to the nature of the count
departures/arrivals, in row, and to the day type (week / week-end), in column.
The results for two specific clusters are presented in Figure 5. We name the first
cluster “Railway stations” and the second “Parks” because these two clusters
correspond to stations that are close to these two kinds of amenities. The maps
presented in Figure 5 clearly show the relationship between these two clusters
and their corresponding amenity. The temporal profiles present also interesting
points, the profile of the “Railway stations” cluster shows an important activity
around peak hours for both departures and arrivals, the other time frame being
in the average of the total population of stations. The parks profiles give a
totally different picture with a rush of activity in the afternoon of the week-end
days and a low activity during the peak hours of the week. The maps (see Figure
5) which depict the positions of the clusters stations confirm the interpretation
of these two usage clusters. All the railways stations of Paris are clearly visi-
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Figure 7: Map of stations positions for clusters “Employment (1)”, with light
green dots, and “Employment (2)”, with light blue dots. The map background
presents the density of jobs per hectare. The areas of the dots representing the
stations are proportional to the station scaling factor αs (Sources ”Recensement
2008”, ”Base permanente des équipements”, Insee).

Table 1: Mean of each cluster with respect to population density (number of
inhabitants per hectare), employment density (number of jobs per hectare),
services density (number of personal services such as restaurants, barber, ... per
hectare) and shops density (number of shops by hectare). Sources ”Recensement
2008”, ”Base permanente des équipements”, Insee.

Cluster name inhabitants/ha jobs/ha services/ha shops/ha

All 162 237 4.2 3.7
“Spare-time (1)” 367 189 6.3 4.4
“Spare-time (2)” 261 322 7.7 6.9
“Parks” 172 90 2 1.7
“Railway Stations” 209 206 2.4 1.8
“Housing” 375 108 3.8 2.7
“Employment (1)” 138 409 4.5 2.8
“Employment (2)” 157 456 5.7 5.6
“Mixed” 301 163 3.8 2.8

ble in the first map, along with several important subway stations like Nation,
Denfert-Rochereau, Porte d’Orléans and Vincennes. The map of the stations
which belong to the “Parks” cluster gives also a clear view of the nature of this
cluster, all the stations are close to parks like Vincennes, Buttes-Chaumont,
Montsouris, La Villette, ...

The remaining clusters shown in Figures 8 and 9 also found their origins in
geography and sociology. The clusters “Spare-time (1)” and “Spare-time(2)”
present high activity values during the week-end nights. The difference be-
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Figure 8: Maps of stations positions for clusters “Spare-time (1)”, “Spare-time
(2)” and “ Housing”. The map background presents the subway and railway
lines, the parks and the Seine. The areas of the dots representing the stations are
proportional to the station scaling factor αs. Each cluster map is completed with
the temporal profile of the cluster, the parameters λklt are to this end arranged
according to departure/arrival and week/week-end. The quantiles 0.05 and 0.95
of the total population of stations activity (scaled by their average activity) are
also shown in order to highlight the temporal specificities of each cluster.
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Figure 9: Maps of stations positions for clusters “Employment (1)”, “Employ-
ment (2)” and “ Mixed”. The map background presents the subway and railway
lines, the parks and the Seine. The areas of the dots representing the stations
are proportional to the station scaling factor αs. Each cluster map is completed
with the temporal profile of the cluster, the parameters λklt are to this end ar-
ranged according to departure/arrival and week/week-end. The quantiles 0.05
and 0.95 of the total population of stations activity (scaled by their average
activity) are also shown in order to highlight the temporal specificities of each
cluster.

17



tween these two sets of stations appears during the week-end, when the cluster
“Spare-time (2)” has a higher activity. This cluster is also more central with
stations near “Les Halles” whereas the stations from “Spare-time (1)” come
from neighborhoods with night activities like Pigalle, Mouffetard, ... The clus-
ter “Housing” presents a dissymmetry in its profile with a lot of departures
during the morning rush but few arrivals, and the reverse during the out of
work peak. The stations belong to a belt surrounding the close center of Paris
which presents a high population density visible on Figure 6. The next two
clusters “Employment (1)” and “Employment (2)” present a dissymmetry, con-
trary to the one in “Housing”: a lot of arrivals during the morning rush but few
departures and the reverse during the out of work peak. During the week-end
the two clusters present differences with more activity in stations from “Em-
ployments (2)”. These two clusters correlate with the employments density as
shown in Figure 7. Finally, the last cluster “Mixed” seems to be formed by
stations with a mixed usage: its temporal profile is medium without specific
features. The previous observations are confirmed by an analysis of the mean of
each cluster with respect to the population density, employment density, service
(restaurants, barber ...) and shops density which are presented on Table 1. An
analysis of variance confirms that the clusters are significantly different with
respect to these four variables. As expected, the local density of inhabitants is
particularly high for the “Housing” cluster, the density of employment being at
the opposite high for the “Employment (1)” and ”Employment (2)” clusters.
Finally, the shops and services densities are important for the “Spare-time”
clusters.

6 Conclusion

This paper has presented a new model-based clustering methodology to explore
the usage statistics generated by bike-sharing systems. This model introduces
a latent variable to encode the stations cluster membership, and an observed
variable which deals with the difference of usage between week days and week-
end days. Conditionally on these variables the observed counts are supposed to
be Poissonians and independent. Their intensities take into account a station
scaling factor that handles the discrepancy between the global stations activities.
An EM algorithm is then derived to estimate the parameters of the model.
Eventually, the methodology is tested to mine one month of usage data from
the Paris Vélib’ system. The clustering found is rich with interpretable clusters
which can be easily linked to the presence of certain type of amenities like parks
and railway stations, and to sociological variables like population, jobs and
services densities. The clusters are richer than the one obtained in other BSS
usage mining studies, since the model uses information on arrivals / departures
and not only on the stations states (free places, available bikes).

Their are nonetheless some room for possible improvements, the naive as-
sumption of conditional independence between the time frames could perhaps
be removed with benefit using approaches like [18] and [29]. The use of Zero
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inflated Poisson or Negative Binomial laws to model the observed counts would
also deserved to be tested and compared with the approach proposed here.
Eventually, the use of a mix-membership mixture model like LDA [3] will be
interesting to describe the mixed nature of the city neighborhoods.

APPENDIX

A Maximization of the lower bound with re-
spect to λklt

The optimization must take into account the constraints
∑
l,tDlλklt = DT, ∀k ∈

{1, . . . ,K}, with Dl =
∑
dWdl the number of days belonging to cluster l. The

Lagrangian associated with these K equality constraints is given by:

L(α,λ) =
∑
s,d,t

∑
k,l

tskWdl (Xsdt log(αsλklt)− αsλklt))+
∑
k

γk(DT−
∑
l,t

Dlλklt),

(9)
with γk the Lagrange multiplier associated with the kth constraints.

∂L(α,λ)

∂λklt
=

∑
s,d

tskWdl

(
Xsdt

λklt
− αs

)
− γkDl = 0 (10)

⇒
∑
s,d

tskWdlXsdt −
∑
s

tskαsDlλklt − γkDlλklt = 0

⇒
∑
s,d

tskWdlXsdt −Dlλklt

(∑
s

tskαs + γk

)
= 0

⇒
∑
l,t

∑
s,d

tskWdlXsdt −Dlλklt

(∑
s

tskαs + γk

) = 0

⇒
∑
s,d,t

tskXsdt −
∑
l,t

Dlλklt

(∑
s

tskαs + γk

)
= 0

⇒
∑
s,d,t

tskXsdt −DT

(∑
s

tskαs + γk

)
= 0

⇒ γk =
1

NT

∑
s,d,t

tskXsdt −
∑
s

tskαs (11)
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⇒
∑
s,d

tskWdlXsdt −Dlλklt
1

DT

∑
s,d,t

tskXsdt = 0

⇒
∑
s,d

tskWdlXsdt −Dlλklt
1

DT

∑
s

tsk
1

DT

∑
d,t

Xsdt = 0

⇒
∑
s,d

tskWdlXsdt −Dlλklt
∑
s

tskα̂s = 0

⇒ λ̂klt =
1∑

s tskα̂sDl

∑
s,d

tskWdlXsdt (12)

B Maximization of the lower bound with re-
spect to αs

∂L(α,λ)

∂αs
=

∑
d,t

∑
k,l

tskWdl

(
Xsdt

αs
− λklt

)
= 0 (13)

⇒
∑
d,t

∑
k,l

tskWdl (Xsdt − αsλklt) = 0

⇒
∑
d,t

Xsdt − αs
∑
k

tsk
∑
l,t

∑
d

Wdlλklt = 0

⇒
∑
d,t

Xsdt − αs
∑
k

tsk
∑
l,t

Dl

∑
t

λklt = 0

⇒
∑
d,t

Xsdt − αsDT = 0

⇒ α̂s =
1

DT

∑
d,t

Xsdt (14)
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