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Abstract: Hidden Markov Random Fields (HMRF) are widely used in solving
various problems. Image segmentation is an example of such HMRF success. This
paper presents a post-processing tool based on such a model and designed to
increase the relevancy of a diagnosis system for rail defects detection. In this
application, the hidden Markov field is not only used to define a spatial smoothness
prior as it is often done in image segmentation, but , it is used to learn the spatial
interaction between track singular points, and so the track label patterns. For this,
an approach based on a semi-parametric model is presented.
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1. INTRODUCTION AND APPLICATIVE
CONTEXT

Infrastructure maintenance is an important field
for railway operators. In particular, rail integrity
is critical for train control as well as operating
quality and availability. To assist in both these
areas, an eddy current sensor has been specifically
developed to detect any variations in the electro-
magnetic characteristics of the rail (Oukhellou et
al. 1999).

Thus, real defects (such as broken rails or shelling)
are detected, as are the singular points such as
the welded joints (Wj), fishplated joints (Fj) and
switch joints (Sj) that join together rail lengths.
The distinction between real defects and singular
points is obviously an essential task that must
be made by the decision system. The first im-
plementation of the diagnosis system was suc-
cessfully tested in July 2002 on the Paris metro

network (Bentoumi et al. 2003). The classifier,
based on the sensor data analysis, detected all
the major defects, such as split rails, correctly.
On the other hand, the minor defect (shelling)
detection rate of this local classifier was estimated
at about 72% (Oukhellou and Aknin 1999). This
is due to the weak signature of such kind of defect
in term of energy level. They are mistaken with
other classes, particularly with singular points like
Welded joints (Wj).

The aim of this paper is the integration of spatial
information in this diagnosis in order to increase
its reliability. Indeed, the setting rules of the track
and the technical constraints for maintenance
actions, induce a strong structuring of the track
singular point positions. In fact, some spatial
patterns are very frequent and might be identified
(cf Fig. 1). For example, fishplatted joints, which
are used for electrical isolation of track portions,
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Fig. 1. Image of track label on a 400m portion

are manufactured with two 3 meters rail lengths
on both sides and set on the track with welds. The
following pattern is therefore very common :

Wj
3m←→ Fj

3m←→Wj

Wj
3m←→ Fj

3m←→Wj

Such patterns brought useful information for sin-
gular point recognition. A model taking them into
account would therefore obtain better results. In
other word, the track could be compared to a
”texture” with stationary statistics. This texture
resumes the singular point patterns and its use
might be interesting to increase the reliability of
the diagnose. Thus, our study aims to built a
model using two information sources :

• sensor data
• track label pattern

This article presents a solution based on HMRF
to model such a system. Indeed, HMRF are inter-
esting for two main reasons : On the first hand,
track label texture might be described by the local
conditional probability distributions of the hidden
field. On the second hand, sensor data might be
integrated in the classification process through the
observable field. HMRF needs a discretized lat-
tice. Taking into account the spatial sampling rate
used by the track maintenance team, the positions
of track singular points will be discrete variables
with 1 meter precision. In fact, all the tracks will
be segmented into 1 meter length sections.

The two next sections introduce theoretical as-
pects of HMRF and present the Semi-Parametric
model adopted for learning the track texture. Sec-
tion 3 deals with the chosen experimental settings
for testing our solution and section 4 focuses on
the results of our post processing tool. Finally,
these results are discussed and some concluding
remarks are given on the interest of such an ap-
proach for the integration of structural informa-
tion into the diagnostic task.

2. HIDDEN MARKOV FIELDS

Let be X = {Xs, s ∈ S = {s1, . . . sM}} and
Y = {Ys), s ∈ S} be two random fields defined
on the lattice S. Each site of X : Xs takes its
value in a frame Ω of possible labels, and each

Ys takes its value in Rn. We proposed to use
sensor data as the observable part Y of the HMRF
defined by Z = {X, Y }, and to express the spatial
interactions between rail points with the local
conditional probability distributions of X. In our
case, Ω represents the possible labels of one meter
long track portions. For a complete description
of Markov Field and Hidden Markov models see
(Besag 1986, Geman and Geman 1984, Rabiner
and Juang 1986).

2.1 Hypothesis

The classical problem with HMRF is to find x̂ the
more likely realization of X, knowing Y = y. Var-
ious models are possible with such an approach,
depending on hypothesis that are made on the
relations between the two fields. We have adopted
the Hidden Markov Random Field with indepen-
dent noise model. Then, the following hypothesis
are made :

p(xs|xr, r 6= s) = p(xs|xr, r ∈ Ns), ∀s ∈ S (1)

p(y|x) =
∏
s∈S

p(ys|x) (2)

p(ys|x) = p(ys|xs), ∀s ∈ S (3)

where Ns represent the neighborhood of xs

This model is named ”with independent noise”
because the random variables Ys are independent
conditionally on X. If X is a Markov field, the
marginal field X|Y = y is also a Markov field.
With such hypothesis the expression of the local
conditional probability distributions that one site
Xs of X|Y = y belong to one element of the frame
Ω is equal to :

p(xs|yt, t ∈ S, xr, r 6= s) = p(xs|ys, xr, r ∈ Ns)

and if the Bayes rule is applied twice, we obtain :

=
p(xr, r ∈ Ns|xs).p(ys|xs).p(xs)

p(ys, xr, r ∈ Ns)

=
p(xs|xr, r ∈ Ns).p(ys|xs).p(xr, r ∈ Ns)

p(ys, xr, r ∈ Ns)

=
1
K

p(xs|xr, r ∈ Ns).p(ys|xs) (4)

where K is a normalizing constant which does not
depend on the value of xs.

So, the local posterior distribution over labels of
the field X|Y = y is proportional to the prod-
uct of the X field local conditional probability
distributions p(xs|xr, r ∈ Ns) by the observation
likelihood p(ys|xs). These different parts must
be defined. They describe the local behavior of



our random field, but Besag (Besag 1974) proved
that the joint distribution over all the site of a
random field is uniquely determined by its local
conditional probability distributions. This local
conditional probabilities are therefore enough to
specify all the model. The Hammersley-Clifford
theorem specifies the condition under which the
local conditional probability distributions define a
valid joint distribution. In that case, the Markov
field is equivalent to a Gibbs field and the joint
distribution may be defined by :

p(x) =
1
Z

exp

(∑
c∈C
−Vc(x)

)
(5)

where Z is the partition function assuring normal-
ity, C is the set of all cliques associated with the
neighborhood N and Vc are the associated clique
potentials.

The local conditional probability distributions are
therefore :

p(xs | xr, r ∈ Ns) = (6)

=
exp

(∑
c∈Cs
−Vc(x)

)∑
xs∈Ω exp

(∑
c∈Cs
−Vc(x)

)
where Cs is the set of all cliques containing xs.

When the local parameters of such model have
been learned, an algorithm such as Iterative Con-
ditional Mode (ICM) may be used to produce an
interesting estimate x̂ = {(x̂s), s ∈ S}, such as
the joint probability of the classification x̂, know-
ing the observable process y, is near maximal.
Such classification process takes into account the
two information sources available here : the spatial
interactions between the sites of X are expressed
with the help of the local conditional probabil-
ity distributions. Sensor data are integrated with
the help of the observable field Y . The next sec-
tion will introduce a semi-parametric approach to
learn the hidden field local conditional probabil-
ity distributions and the conditional probability
density functions of the observations.

3. A SEMI-PARAMETRIC APPROACH

As already said, the hidden Markov field is not
only used, to define a spatial smoothness prior,
as it is often done in image segmentation, with
the Ising or the Potts model (Wu 1982). In our
application, the Markov field is used to learn the
repeated singular point patterns of the track. Our
approach to learn the local conditional probability
distributions of X is thus closer to those found
in Texture Synthesis or Recognition (Paget and

Longstaff 1984) and is nonparametric. Then, the
vector of parameters (Ψ,Φ) describing the model
has thus two different parts :

• Ψ (nonparametric part) : contains all the
local conditional probability distributions :
p(Xs = ω|(xr, r ∈ Ns) = θ),
∀θ ∈ Θ, ∀ω ∈ Ω, where Θ is the ensemble
of possible neighborhood configurations

• Φ (parametric part) : contains all the param-
eters that describe the conditional densities
of the observable field knowing each class :
p(ys|xs = ω) = f(ys;λω),∀ω ∈ Ω

The local conditional probability distributions of a
Markov field can be learned with a nonparametric
approach. In that case the probability of one label
knowing the neighbors label is simply estimated
by its frequency in a homogeneous sample of the
random field, as expressed in Eq. 7

p(Xs = ω | (xr, r ∈ Ns) = θ) =

=
∑M

s=1 δ(xs, ω).δ((xr, r ∈ Ns), θ)∑M
s=1 δ((xr, r ∈ Ns), θ)

(7)

, ∀ω ∈ Ω, ∀θ ∈ Θ

where δ is the Kronecker function.

When the sample data is sparsely dispersed over
the configuration space, this estimation tends
to be more reliable than parametric estimation.
However, with nonparametric estimation, the lo-
cal conditional probability distributions may not
define a valid joint distribution. Nevertheless, in
practice, such an estimation approach has already
proved is efficiency in texture recognition (Paget
and Longstaff 1984).

To use this scheme some realization of the Hidden
Markov field must be available during the training
phase. The RATP company (the Paris metro net-
work operator), has recorded in a specific database
named SIAM, the positions and natures of all
joints of its lines. So, in our case, some realizations
of the hidden field were available for the training.

An application particularity must be explained to
define Ω the label space of X . The final frame,
that we are interested in, is :

Ω
′
= {N,Wj, Fj, Sj,D}

where D is the label for defects and N is the
label for rail portions without defects nor singular
points.



However, track setting rules and maintenance
actions constrain the positions of singular points,
but they do not constrain the position of minor
rail defects. So the label space Ω of X must be
modified to take into account this fact :

Ω = {O,Fj, Wj, Sj}

where O stands for Other.

Ω is related to Ω′, by the following relations:

Ω // Ω′ (8)

{O}→ {D ∪ND}
{Wj}→ {Wj}
{Fj}→ {Fj}
{Sj}→ {Sj}

Using SIAM database, an image of each track was
built. Each track meter was labeled by a value in
Ω. Fig. 1 show an extract of such a picture. All of
these images were considered as various realiza-
tions of the same Markov Field X and the local
conditional probabilities p(Xs = ω|(xr, r ∈ Ns) =
θ) were easily estimated, with their frequencies in
these samples.

To learn the parameters Φ, describing the con-
ditional distribution of Y , a parametric model
was chosen and the parameters were learned with
a maximum likelihood approach. Normal condi-
tional distributions and their mixture were pos-
tulated to deal with the differences between, the
frame of interest for classification Ω′ and the frame
of X (Ω). Using 8, the distribution of ys knowing
Xs = O was defined as a mixture of normal
distributions:

p(ys|xs = O) = πD|Oφ(ys;µD,ΣD) (9)

+ πN |Oφ(ys,µN ,ΣN )

where φ(.;µ, σ) is the multidimensional nor-
mal probability density function with parameters
(µ,Σ) and πD|O = p(Xs = D|Xs = O), πN |O =
p(Xs = N |Xs = O).

The last things that must be adapted to fit the
model to our application specificities is the neigh-
borhood system. The proposed solution is intro-
duced in the next subsection.

3.1 Neighborhood System

Our application context is quite different from the
classical image classification problem. Indeed, we
always have to deal with ”images” of size M = 2∗

N , one row for each rail of the track. In our case N
is near 10 000. To define a valid joint distribution,
a neighborhood system must respect the following
criterion:

s ∈ Nr ⇔ r ∈ Ns (10)

So, for a neighborhood N k, two groups of sites
were considered. The first one corresponds to a
2 ∗ k + 1 meters windows centered on the current
site which covers the current rail. The second one
uses the same window but on the opposite rail.
Such symmetric neighborhood is justified by the
track laying rules and maintenance policies which
introduce many symmetries between the two rail.
Different window length k = 1 . . . 6 have been
tested to choose the best solution.

Fig. 2. Diagram of the Neighborhood systems

The last neighborhoods are quite large, compared
to classical image applications. But, due to the
strong structure of the track, only a small part of
the possible configurations are met on our data.
In fact during the training we have found 4 964
different configurations for N 5 and 7 879 for N 6,
which must be compared to 421 and 425 possible
configurations. So, as it was assumed, the sample
data is sparsely dispersed over the configuration
space. In the next section the ICM algorithm used
for the classification task is briefly presented.

3.2 Classification with ICM

The ICM algorithm was first proposed by Besag
(Besag 1986), as an iterative approximation of
the joint distribution MAP estimator. The algo-
rithm begins with an initialization x̂0, and until
convergence, a site is randomly chosen and the



most likely label for this site, knowing the current
classification and the observable process y, is as-
signed to it. The following pseudo code resumes
this algorithm:

initialization
x0

s = rand(Ω), ∀s ∈ S

until convergence
s = random(S)

x̂k+1
s = arg max

ω∈Ω

(
p(ω|xk

r , r ∈ Ns).p(ys|ω)
)

This algorithm converges to a local maximum of
the Gibbs conditional distribution. The conver-
gence of the algorithm to a local maximum is de-
tected when, between two consecutive scans of all
sites, the number of changes is low. This algorithm
was used because a simulated annealing is more
time consuming. Furthermore, the texture learned
by the hidden random field is strongly structured,
so a simple ICM is interesting to reach a good
solution in few time. During our experiments,
we observed that the convergence is reached in
less than 10 scans. This fact confirmed that the
solution found with the ICM algorithm is quite
good.

To produce a final decision on the frame Ω′ a
final processing must be done. When ICM has
converged to a good solution, a last scan is made
and all sites with the label O are classified in N or
D with the help of sensor data only. The decision
is made according to the posterior probabilities of
the two hypothesis, from Eq. 9 :

ω = arg max
ω∈{N,D}

(p(ω|y, O)) (11)

p ( xs = N |y, xs = O) = (12)

=
πN |Oφ(ys;µN ,ΣN )

πN |Oφ(ys;µN ,ΣN ) + πD|Oφ(ys;µD,ΣD)
p ( xs = D|y, xs = O) = (13)

=
πD|Oφ(ys;µD,ΣD)

πN |Oφ(ys;µN ,ΣN ) + πD|Oφ(ys;µD,ΣD)

4. EXPERIMENTAL SETTINGS

To test our solution, we have simulated sen-
sor data and used a specific part of the SIAM
database as realizations of the hidden field. But,
the SIAM database contains any information on
minor defects position. So, to introduce defects
some normal rail locations were randomly con-
verted to defects, with a probability p. The model

of sensor data is a Gaussian mixture composed
of five modes. Fig. 3 presents the four principal
modes. The last one {N} is far away rejected and
not presented on Fig. 3.

Fig. 3. Diagram of the virtual sensor data

In order to reproduce the real experiment context,
we have chosen the parameters of the normal dis-
tributions to obtain confusion levels close to those
found during the first experimental test of the
sensor (Bentoumi et al. 2003). The performances
of the optimal Bayes classifier on this simulated
sensor data are the following :

ND WJ FJ SJ D

100 98.33 94.24 94.50 70.99

Table 1. Correct detection rate of the
optimal Bayes classifier with simulated

data

5. RESULTS

Four metro tracks (92 132 observations) have been
used for HMRF training and one metro track (16
062 observations) for the evaluation of model’s
accuracy. In order to obtain better performances
evaluation, the random process which inserts mi-
nor defects and generates the sensor data, has
been repeated one hundred times. Tab. 2 presents
the results of HMRF models with neighborhood
N i, i ∈ {0 . . . 6}, averaged over these hundred
runs.

We may observe different facts in these results.
First, even using very few information, HMRF
with neighborhood N 0 gives already interesting
results and outperforms the optimal Bayes classi-
fier with only sensor data. This may be explained
by the fact that the left and right rails of a track
are very strongly correlated. Thus, the informa-
tion from the opposite rail is very informative.
We may also notice, that it’s possible, for all the



ND Wj Fj Sj D

N 0 100 98.42 97.81 98.45 79.19

N 1 100 98.54 97.63 98.10 82.13

N 2 100 98.51 95.18 98.10 83.46

N 3 100 98.46 95.25 95.65 84.32

N 4 100 98.31 94.46 95.45 84.59

N 5 100 97.70 93.34 99.20 84.67

N 6 100 97.38 93.59 99.35 84.35

Table 2. Correct detection rate of the
HMRF

classes, to find a neighborhood which outperforms
the optimal Bayes classifier using only sensor data.

An increase of the neighborhood size must induce
an improvement on the detection rates, except
if the training set size is too small. If we look
closer at the correct detection rate for the D class
(cf. Fig 4), a neighborhood size of 5 seems to be
a good trade off between complexity and good
generalization properties.

Y alone N0 N1 N2 N3 N4 N5 N6
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Fig. 4. D Correct detection rate of the different
Neighborhood System

Finally, these results are very encouraging for our
application. Indeed, as hoped, the non structural
point like D, misclassified as joints without our
post processing, are now well recognized as non-
singular points. And real joints are still recog-
nized. Our post processing is therefore relevant to
distinguish between elements of the track struc-
ture (singular points) and real defects. Logically,
the correct recognition rate improvement for the
minor defect is the most important, with an in-
creasing of more than 13%.

6. CONCLUSIONS

This study dealt with the integration of the track
label texture for a better railways minor defects
classification. Track label texture learning ap-
peared to be useful to improve a classical diagno-
sis system based only on sensor data. Moreover,
HMRF have proved their relevancy to learn, with
a labeled database, such texture. Furthermore, the
choice of a simple classification algorithm (ICM)

seemed to be acceptable with respect to com-
putational load, computational time and results
accuracy. Finally, the semi-parametric approach
presented here for parameter learning has also
proved is efficiency.
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