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Résumé

Cet article présente un algorithme permettant d’extraire une com-
munauté de nœuds densément connectés dans un graphe. La solution
proposée à ce problème s’appuie sur une approche semi-supervisée au
sens où un ensemble de graines (nœuds appartenant à la communauté
à extraire) doit être fourni. En partant de ces graines l’algorithme ex-
plore le graphe et décide d’ajouter ou non les nouveaux nœuds ren-
contrés à la communauté en utilisant deux tests basés sur une ver-
sion contrainte du modèle de mélange de graphes de type Erdös-Rényi
[7]. Ce modèle simple sera appelé "noise cluster model". Une méthode
d’estimation en ligne [23] est utilisée pour mettre à jour les paramètres
du modèle tout au long de la procédure d’extraction de la communauté.
Cette approche est donc locale au sens où elle présente une complexité
dependant principalement de la taille de la communauté à extraire et
indépendante de la taille du graphe complet, ce qui permet d’appliquer
celle-ci sur des graphes de tailles quelquonques. Finalement, des expé-
riences sur des communautés réelles de blogs seront présentées pour
juger de la pertinence de l’approche proposée.

Mots-clés: clustering de graphe, extraction de communautés,
apprentissage semi-supervisé

Abstract

This paper presents an algorithm designed to extract one commu-
nity (a collection of vertices that are densely connected amongst them-
selves) from a graph given some seeds (nodes known to belong to the
community). Starting from these seeds nodes, new nodes will be ad-
ded to the community by selecting them among the successors of the



current community members. The process used to select the community
members among the successors is based on a generative model closely
related to Erdös-Rényi mixture [7] called the Noise Cluster Model. An
on-line estimation procedure [23] is used to update the model parame-
ters during the community extraction process. This approach is local,
the complexity is mainly influenced by the community size and does not
depend upon the graph size. This method can therefore be used to deal
with huge graphs. Eventually, experiments on real blog communities
will show the interest of such an approach.

Key-words: graph clustering, community extraction, semi-supervised,
noise cluster model

1 INTRODUCTION

A community could be loosely described as a collection of vertices within
a graph which are densely connected amongst themselves while being loo-
sely connected to the rest of the graph. Community detectionin complex net-
works has attracted a lot of attention in recent years (for a review, see [9]). In
fact, detecting communities or modules can be a way to identify interesting
substructures which could correspond to those parts of the networks which
have specific properties. Communities may correspond for example to spe-
cific functions in biological networks [12] or to specific topics in web pages
networks [8, 1] (the experimental part of the paper will alsohighlight this
fact). Therefore, identifying communities may help in understanding more
deeply the structure of the analysed networks. As in biology, where it is wi-
dely believed that biological networks of genes or proteinspresent a modu-
lar structure which is the results from evolutionary constraints and plays a
crucial role in biological functions [20, 19, 14]. Other relevant examples of
interesting community structures can be found in social networks [11, 16] or
food webs [15].

The main approaches to identify communities in networks arebased on
graph clustering algorithms which take as input a whole graph and supply
a partition of the vertices which optimize an objective function such as the
widely used Newmanmodularity[17]. Similar solutions more linked to the
proposal of this paper use the Erdös-Rényi mixture model [7,23, 24], also
calledblock models[13, 21] to derive the objective function. All these me-
thods search for all the communities of the network and are therefore global,
their complexities scale with the size of the graph.

The problem addressed here is slightly different : the aim ofthe propo-
sed algorithm is to extract only one community of interest from the network,
the others communities being considered as useless. To do sothe algorithm
will be supplied with seeds nodes defined as nodes known to belong to the
community of interest. Such an algorithm can be useful for example to ex-
tract a set of web pages on a topic of interest using few seeds pages. Taking
into account the local nature of the problem (the structure of the networks



outside the target community being of no interest to solve the problem), this
paper proposes a local algorithm built over the Erdös-Rényimixture model to
extract the community which encloses the seeds. This algorithm has a com-
plexity (in term of memory space and computational time) which is mainly
influenced by the size of the extracted community and do not depend upon
the graph size.This property is of interest and enables the use of such a so-
lution on very big graphs such as the World Wide Web graph. Experiments
will highlight this fact by using this algorithm to extract blog communities
dealing with specific topics.

Other local procedures have already been proposed to extract one commu-
nity starting from seeds nodes. Bagrow & al [3] propose a technique which
relies upon growing a breadth-first tree outward from one seed node, until
the rate of expansion (proportion of edge found at the current level which
lead to nodes which are yet unknown) falls below an arbitrarythreshold.
This simple solution is interesting. However, since all thenodes found at one
level of the breadth-first tree are added to the community (ifthe rate of ex-
pansion is below the threshold), it will succeed in extracting the community
only if the source vertex is equidistant from all parts of itsenclosing com-
munity boundary. The seed must therefore be carefully chosen or multiple
seeds used and the results combined (this second solution isadvocated by
the authors). Another solution proposed in [6] is based on the greedy optimi-
zation of a quantity calledlocal modularity. This quantity involves a specific
set of nodes calledboundary. This set is defined as the set of nodes that have
at least one neighbor in the set of yet unknown nodes. Local modularity is
then defined as the number of edges between this set and the setof known
nodes over the total number of edges with one extremity in this set. The
greedy optimization of this quantity simply adds the unknown node which
gives the largest increase (or the smallest decrease) of thelocal modularity
to the community until a predefined number of nodes is reached. As with
the previous solution, only one node is used as seed, which isdifferent from
our solution. Furthermore, here the optimized criterion isderived from anad
hoc definition and no solution to automatically stop the extraction process
is supplied (the number of nodes to extract must be supplied by the user).
Other solutions to the community extraction problem use conductance and
random walks [2] or combinatorial algorithms [22] to define the extraction
procedure, however these solutions present complexities that scale linearly
with the size of the graph, whereas our solution scale with the size of the
community to extract.

The road map of the paper is the following, first some background on
Erdös-Rényi mixture model will be supplied in section 2. Then, the constrai-
ned version of this model used in the paper will be detailed insection 3.
Eventually, section 4 presents the proposed local algorithm, and section 5 de-
tails preliminary experiments on real blog community extraction problems.



2 BACKGROUND ON ERDÖS-RÉNYI MIXTURE

MODEL

Formally, the graph clustering problem is set-up in the Erdös-Rényi mix-
ture model with the help of two sets of random variables with the following
meaning (capital letters denote random variables whereas non capital letters
denote realizations of the same random variables) :

– Xij ∈ {0, 1} are binary variables indicating the presence or the absence
of an edge fromi to j :

xij =

{

1, if there is a link fromi to j

0, otherwise.
(1)

– Zj ∈ {1, . . . ,K} are latent variables encoding cluster membership of
vertexj among theK possible clusters, such that :

zj = k, if j belongs to clusterk. (2)

Directed graphs will be considered in this paper. Thereforewe will consider
thatxij may differ fromxji. These variables have the following distributions
in this model :

Zj
i.i.d
∼ M(1, γ), ∀j ∈ {1, . . . , N} (3)

Xij |Zi = k, Zj = l
i.i.d
∼ B(πkl), ∀i, j ∈ {1, . . . , N}, (4)

whereM denotes the Multinomial distribution andB the Bernoulli distribu-
tion. This generative model has therefore the following interpretation :

1. draw the cluster of each node according to the probabilitiesγ

2. add an edge betweeni and j with a probabilityπkl if i belongs to
clusterk andj belongs to clusterl.

Therefore, whenπkk ≫ πkl,∀k 6= l, clusters correspond to dense compo-
nents in the graph, and this model can be used to recover the community
structure of a graph [23, 21]. We propose to use in the contextof commu-
nity extraction a simpler model with less parameters. We present shortly this
model in the next section. This constrained model is dedicated to the case
where the graph contains only one community and background noise with
no specific structure.

3 THE NOISE CLUSTER MODEL

We will consider only two mixture components, one for the community
which encloses the seeds and one for the nodes that do not belong to that
community, that will be called thenoise component. We will therefore use



only one Bernoulli variableZi to deal with cluster membership of vertexi,
which is defined as :

zi =

{

1, if i belongs to the community of interest

0, if i belongs to the noise component
(5)

The model is a constrained version of the block model and takes the follo-
wing simple form :

Zi
i.i.d
∼ B(γ), ∀i ∈ {1, . . . , N} (6)

Xij |Zi × Zj = 1
i.i.d
∼ B(α), ∀i, j ∈ {1, . . . , N} (7)

Xij |Zi × Zj = 0
i.i.d
∼ B(β), ∀i, j ∈ {1, . . . , N} (8)

We therefore have only three parametersθ = (α, β, γ), γ is the prior proba-
bility of the community,α is the probability that two nodes from the commu-
nity are linked andβ is the probability that tunes the noise cluster behaviour.
This simple model is sufficient to represent the community structure that we
are interested in, provided thatα ≫ β. Let us introduce some notations and
properties of this model which will be used in the sequel.

Definition 1
Letdj be nodej degree with community members,din

j nodej in-degree with
community members anddout

j nodej out-degree with community members :

din
j =

∑

i:zi=1

xij , dout
j =

∑

i:zi=1

xji, dj =
∑

i:zi=1

(xij + xji)

Definition 2
Let pi

N+1 be the community membership posterior probabilities of a new
node given only its in-links and the cluster membership of the firstN nodes :

pi
N+1 = P(ZN+1 = 1|xi(N+1), zi, ∀i ∈ {1, . . . , N}).

Let pio
j be the community membership posterior probabilities of a new node

given its in-links and out-links and the cluster membershipof the firstN
nodes :

pio
N+1 = P(ZN+1 = 1|xi(N+1), x(N+1)i, zi, ∀i ∈ {1, . . . , N}).

Proposition 3.1
Community membership posterior probabilitiespi

j , andpio
j depend only on

parametersα, β, γ anddin
j , dj respectively and are given by :

pi
N+1 =

γαdin

N+1(1 − α)(Nc−din

N+1)

γαdin

N+1(1 − α)(Nc−din

N+1) + (1 − γ)βdin

N+1(1 − β)(Nc−din

N+1)
, (9)



pio
N+1 =

γαdN+1(1 − α)(2Nc−dN+1)

γαdN+1(1 − α)(2Nc−dN+1) + (1 − γ)βdN+1(1 − β)(2Nc−dN+1)
, (10)

with Nc =
∑N

i=1 zi the community size. See appendix 6 for the derivation
of these equations.

The probabilitiespi
N+1 andpio

N+1 depend only on graph structure through
din

j (the number of in-goings links from the community members) and dj

(the total of links with community members) respectively. The number of
links shared with the noise component is irrelevant. This property comes
from the constraints imposed by the noise cluster model overthe general
Erdös-Rényi mixture model.

Figure 1 gives an example of this conditional law. As expected, this quan-
tity increases withdin

j (with α ≫ β). More links from the community give
therefore a higher probability of belonging to the community.

FIG. 1 – Values ofpin
N+1 with respect todin

N+1 with α=0.1,β=0.001,γ=0.05
andNc=200.

Starting from this simple model, we will describe an online,greedy algo-
rithm that adds new nodes to the community from the communitysuccessors.

4 LOCAL ALGORITHM DESCRIPTION

As explained in the introduction, the algorithm is suppliedwith seeds
nodes. These seeds are considered to belong to the communitywith certainty,
and along its path the algorithm add new nodes to the community by looking
at the current community members out-going links.

The algorithm proceeds one vertex at a time in a breadth first fashion, but
uses the previous generative model to decide which found node to add to the
community. A first test, which uses only in-links information, is performed
to find new nodes that may belong to the community. Such nodes are then
added to the queue of nodes which require further investigation. When a node



succeeds in this first test, another test (which takes into account the in-going
and out-going links of the node) is performed to decide whether to add it
permanently to the community. This process is repeated until no more nodes
are accepted by the first test. Throughout the community extraction process
the three model parameters are updated using an on-line estimation strategy
[23]. The core of the algorithm is the two tests used to decideto add or
not one node to the community or not and the on-line parameters estimation
procedure. The two tests are derived directly from equations (9) and (10).
We describe them shortly and give some insights into the on-line estimation
procedure.

4.1 Community Membership tests

When only in-links are known it is natural to decide thatj belongs to the
community whenpi

N+1 > s. The thresholds can be defined by default to
0.5 but it can also be interesting to use more strict values such as 0.8 or 0.9
when one wants to take less risk of contaminating the extracted community
with noise. Starting form equation (9) we may rewrite the test in terms of
din

N+1 (see appendix 6 for the details) :

din
N+1 > din

min, (11)

with din
min equals to :

din
min =

⌊

log
(

s(1 − β)Nc(1 − γ)
)

− log
(

(1 − s)(1 − α)Ncγ
)

log (α(1 − β)) − log ((1 − α)β)

⌋

Figure 2 presents the evolution ofdin
min with respect to the community size

Nc which has a simple step profile. Similar expressions can be obtained for
the test which uses in and out links using equation (10) whichis performed
in a second step when the node out-links have been retrieved.

FIG. 2 –dmin evolution with respect to the community sizeNc with α = 0.1,
β = 0.001, γ = 0.05 ands = 0.5.



4.2 Parameters estimation

This section describes how the incremental classification version of the EM
(CEM) algorithm, proposed by [23], can be adapted to estimate the previous
model parameters during the community extraction process.The proposed
algorithm differs from [23], by the order in which nodes are processed and
by the used stopping criterion. In the classical online CEM algorithm the
whole graph is processed and node are randomly ordered, whereas in our
proposal only a small portion of the graph is processed and nodes are pro-
cessed according to their distances to the seeds. We first present the criterion
used to estimate the parameters, known asclassification likelihood, then the
estimation procedure itself. In the case of a full adjacencymatrix, the classi-
fication log-likelihood is defined as :

Lc(θ,X,Z) =
∑

i

zi log(γ) +
∑

i

(1 − zi) log(1 − γ)

+
∑

i,j:i6=j

zi × zj × xij log(α) +
∑

i,j:i6=j

zi × zj(1 − xij) log(1 − α)

+
∑

i,j:i6=j

(1−zi×zj)×xij log(β)+
∑

i,j:i6=j

(1−zi×zj)×(1−xij) log(1−β)

with Z = {z1, . . . , zN}, X = {xij : i 6= j; i, j ∈ {1, . . . , N}}, andθ =
(γ, α, β) the parameters vector.

If the partitionZ = {z1, . . . , zN} is known and with a square adjacency
matrix of sizeN × N , the parameter vector maximizing the classification
likelihood is found by setting to zero the derivative of the classification log-
likelihood with respect to each parameters. They are therefore given by :

γ̂ =
Nc

N
, (12)

α̂ =
1

N2
c

N
∑

i,j=1, i 6=j

(zi × zj)xij , (13)

β̂ =
1

Nc̄ × (N + Nc)

N
∑

i,j=1, i 6=j

(1 − zi × zj)xij , (14)

with Nc̄ the number of nodes that do not belong to the community,Nc̄ =
∑N

i=1(1 − zi) andN the total number of nodes.
However, the partitionZ = {z1, . . . , zN} is unknown and must also be

estimated, an on-line alternating optimization solution can be used to solve
this problem. For this purpose the two previous tests are used to estimate the
partition for every new nodes and equations (12, 13, 14) are used to update
the parameters after each test. Such solution is sub-optimal sinceNbarc will
be underestimated but works well in practice and is really fast. Eventually, it
is important to note that equations (12, 13 and 14) can be computed incre-
mentally to avoid unnecessary calculus, see [23] for details.



4.3 Local greedy algorithm for community extraction

All the pieces put together lead to the local greedy algorithm that we pro-
pose for community extraction. Algorithm 1 summarise the main steps of
this algorithm. We present in the next section some results on several blog
communities extraction tasks.

5 EXPERIMENTS : BLOG COMMUNITIES EXTRAC -
TION

An experimental version of the algorithm was developed to deal with net-
works of HTML documents and used to extract blog communities. This ex-
perimental tool is basically a multi-threaded web crawler (which implements
theretrieveoutlinks function required by the algorithm) coupled with the
community extraction procedure described above. The seedsURLs supplied
to the algorithm were taken from a blog portal called Wikio3 which of-
fers several rankings of blogs for several topics. Theses ranking were used
to provide 50 seeds to the algorithm for 4 test communities. All the other
inputs of the algorithm were set to default values for all theexperiments
(s = 0.5, α0 = 0.05, β0 = 0.001, γ0 = 0.05). The goal of the experiments
is two-fold :

– first we aim to validate that the returned community fulfill the structural
definition of a community,

– secondwe want to check that the extracted communities meet the al-
ready observed phenomenon [8, 1],i.e. that communities of web pages
(in the graph sense of densely connected set of vertex) correspond to
pages dealing with the same topic.

The communities returned by the algorithm will therefore beanalysed first
with respect to their structure and in a second step with respect to their
content. The estimated model parameters (reported in Table1) will be used to
check that the extracted communities correspond to the loose definition of a
community (a collection of vertices within a graph that are densely connected
amongst themselves while being loosely connected to the rest of the graph).

– α̂ as defined by equation 13 corresponds to the community links density
and can therefore be used to validate that vertices of the communities
are densely connected.

– β̂ corresponds to the density of links between community members and
non-community members (see equation 14) and can therefore be used
to check that community members are loosely connected to therest of
the graph.

Table 1 presents the model parameters estimated by the algorithm and the
size of the retrieved communities. This table highlights the fact that the ex-
tracted communities have a high internal links densityα̂ (around0.02 for all

3http ://www.wikio.com, http ://www.wikio.fr



Algorithm 1 Local greedy community extraction based on the noise cluster
model
Require: a function to retrieves nodes children :retrieveoutlinks(node)
Require: a set of seeds nodes :seeds

Require: community membership tests threshold :s ∈ [0, 1], (default 0.5)
Require: initial value for parameters :α(0), β(0), γ(0)

{Initialisation}
α ← α(0), β ← β(0), γ ← γ(0)

queue ← seeds

community ← seeds

update : dmin, din
min (eq. 11)

{Main loop}
while isnotempty(queue) do

{Retrieve a community successor}
node ← dequeue(queue)
{Retrieve node children}
outlinks ← retrieveoutlinks(node)
dout

node = size(outlinks)
dnode = din

node + dout
node

{Test for community membership}
if dnode > dmin then

community ← {community, node}
Nc ← Nc + 1
{Update children in-links from the community counter}
for all outlinks do

target ← target(outlinks)
din

target ← din
target + 1

{Test for community membership using only in-links}
if din

target > din
min then

enqueue(target)
end if

end for
end if
{Parameters update}
update : α, β, γ (Eq. 12, 13, 14)
update : dmin, din

min (eq. 11)
end while
return community



the communities) and a loŵβ (around0.001). The algorithm has therefore
succeeded in retrieving a set of densely connected nodes which enclose the
seeds and which has furthermore very few links with the rest of the graph.
The diameter (the longest shortest path, denoted bydia) of the community
and the average shortest path length between community members (denoted
by apl and also reported in Table 1) supply also clues on the strong connec-
tions between the communities members : small diameters (between 6 and
8) and small path length (between 2.7 and 3.1).

The communities sizes are reasonable around1 000. Starting from50 seeds
the algorithm was therefore able to expand the community size by a factor
between 12 and 36 for the different communities. The sizes ofthe subnet-
works processed by our algorithmN are big, the extracted communities as
expected with networks of HTML pages, are therefore small modules with
respect to the network size.

Illustration (Fr) Scrapbooking (Fr) Cooking (Fr) Politics(U.S.A.)
α̂ 0.01829 0.02955 0.03846 0.02004
β̂ 0.00094 0.00232 0.00209 0.00068
Nc 1 360 701 622 1 808
N 37 101 13 467 16 364 84 702
dia 8 8 6 7
apl 3.059 2.749 2.71 3.014

TAB . 1 – Estimated model parametersα̂, β̂ and structural statistics for the
4 communities extracted :Nc is the community size,N the total number of
vertices seen during the extraction process,dia stands for community diame-
ter andapl corresponds to the average path length between all the community
members.

The second goal of the experiments was to validate the fact that the extrac-
ted communities correspond to blogs which deal with the specific topics of
the supplied seed. Several, investigations were performedby analysing the
blogs contents to confirm this point, and the results for eachcommunity are
presented in the next subsections.

5.1 Illustration (Fr), community analysis

The first investigation performed on the extracted community, deals with
the evaluation of the precision of the algorithm with respect to the seed to-
pic. To evaluate this precision, 100 blogs of the community were manually
visited by the authors, and the number of blogs with the same main topic
as the seeds (here illustration) was recorded. This estimation of the preci-
sion gives99% for the Illustration community, (only one blogs over the 100
visited blogs was dealing with another topic). We thereforemay conclude



that the returned blogs are coherent in terms of topic. However, the language
of the analysed blogs was not found to be always French (the seeds lan-
guage), an important part of the retrieved blogs were written in english. The
strong relations between French and American or English illustration com-
munity may be explained by the number of French people working in the
American animations studios like Disney and Pixar. This point was also che-
cked by analysing the text content of the retrieved communities. To this end,
word frequencies in documents (fraction of blogs where the word appears
at least once in the front page, denoted bywdf ) were computed for each
word. Then the Kullback-Leibler divergence between this word document
frequency and the document frequency of the same word in a negative class
of random blogs was computed. By sorting the words accordingto their di-
vergence and keeping the best ones, the core vocabulary of each community
was extracted. Figures 3 presents word clouds of this core vocabulary for
the illustration community. It appears that the words are inadequacy with
the community topic, with terms like illustration (wdf = 25%), animation
(wdf = 34%), drawing (wdf = 28%), gobelins (a well known art university
in Francewdf = 4.6%) and so on.

FIG. 3 – Word Clouds for the Illustration (Fr) community. The first 50 words
in descending order of their Kullback-Leibler divergence are extracted (bet-
ween word document frequency in the community and in a negative class of
2000 random blogs, texts have been first preprocessed using stop lists and
stemming). Word sizes are proportional to the word documentfrequencies in
the community.

5.2 Scrapbooking (Fr), community analysis

As previously, 100 blogs of the community were manually visited to es-
timate the precision. This procedure gives a score of98% for the Scrap-



booking community. Furthermore, for this community, the language of the
analysed blogs was found to be always French (the seeds language). Text
content of the community blogs was also analysed with the same process as
before and the results are displayed in Figure 4. The extracted vocabulary
corresponds to the seed topic with for example : scrap (wdf = 84%), scrap-
booking (wdf = 58%), tampons (wdf = 48%), ... Furthermore, more than
72% of the blogs urls contain the word scrap. This scores confirm that the
returned blogs have for main topic scrapbooking.

FIG. 4 – Word Clouds for the Scrapbooking (Fr) community (same metho-
dology as in Figure 3).

5.3 Cooking (Fr), community analysis

The precision manually estimated over 100 blogs gives100%, all the visi-
ted blogs have therefore for main topic cooking. The community word cloud
depicted in Figure 5, highlight the coherence of the retrieved community.
The extracted words : cuisine (wdf = 83% cooking in English), recette
(wdf = 79%, recipe in English), chocolat (wdf = 68%, chocolate in En-
glish), saveur (wdf = 44%, flavor in English), ... are all connected to the
semantic fields of cooking.

5.4 Politics (U.S.), community analysis

The precision estimated for this community is a little less important than
for the three first, with96% of blogs mainly dealing with politics. The voca-
bulary extracted by the same methodology as before is relevant (see Figure
6) with terms like : senate (wdf = 29%), conservatives (wdf = 21%), demo-
crat (wdf = 18%), pundit (wdf = 20%), terrorism (wdf = 19%), senator
(wdf = 19%), medicare (wdf = 18%).



FIG. 5 – Word Clouds for the Cooking (Fr) community (same methodology
as in Figure 3).

FIG. 6 – Word Clouds for the Cooking (Fr) community (same methodology
as in Figure 3).

Since this community is more complex than the three other, and because
of its interesting internal structure, we provide an illustration showing the
community network in Figure 7. Different sub-communities can be seen on
this figure. Therefore in this case a hierarchy of communities exists, and
the presence of sub-communities can be explained by the different political
tendencies structuring the political debate in the U.S.A. The algorithm has
not extracted only one such community, because the chosen seeds came from
different sub-communities.



FIG. 7 – Politics (U.S.A.) network drawn using the Fruchterman-Reingold
algorithm [10] of the Gephi software [4]. Nodes colours correspond to a
modularity clustering of the community, node sizes are proportional to the
nodes page-rank [18].

6 CONCLUSION AND FUTURE WORKS

The experimental solution to the community extraction problem proposed
in this paper seems relevant. It is quite important to note that a simple, greedy
approach is able to extract communities with high precision. Such simplicity
and scalability is of great importance when dealing with multi-billion nodes
graphs, as is the case with some real world examples like web or online social
graphs.

From an experimental point of view, blog community extraction was per-
formed using such a tool with success. However, more work is needed to
better understand and evaluate the model.

First, we could find other application domains were different community
structures exist with different characteristics [9]. Applying the method to
biological systems (e.g.protein interaction networks) or online social net-



works and the like may provide clues about the robustness of the approach
with respect to the different graphs structures one may find in such different
contexts. We could also try to find a generic method to set the initial value
of the parameters given these various application domains.Experimenting
with structures which are do different may lead to generalize the algorithm
in order to make it able to decide if there is only one or several community
structure(s) in the explored network. The only drawback of such an approach
is the need to have annotated corpora with ground-truth communities.

Second, robustness of the methods to perturbations of the seeds set must be
investigated. Comparing the communities extracted by the methods starting
from different random samples may help to evaluated this point.

Eventually, we could make use of the related field of graph generation al-
gorithms. The purpose of these algorithms is to be able to generate realistic
graphs with predefined output parameters,e.g. radius or clustering coeffi-
cient. A quite comprehensive overview of this field may be found in [5]. In
our case this kind of algorithm may be used to produce synthetic datasets
for which we have by construction the ground truth communities. This may
greatly help to experiment with our detection algorithm with a broad range
of graph structures (by changing the generator algorithm) and variations (by
changing the output parameters values).
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APPENDIX A
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