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ABSTRACT1

This paper deals with a data mining approach applied on Bike Sharing System Origin-Destination2

data, but part of the proposed methodology can be used to analyze other modes of transport that3

similarly generate Dynamic Origin-Destination (OD) matrices. The transportation network inves-4

tigated in this paper is the Vélib’ Bike Sharing System (BSS) system deployed in Paris since 2007.5

An approach based on Latent Dirichlet Allocation (LDA), that extracts the main features of the6

spatio-temporal behavior of the BSS is introduced in this paper. Such approach aims to summarize7

the behavior of the system by extracting few OD-templates, interpreted as typical and temporally8

localized demand profiles. The spatial analysis of the obtained templates can be used to give in-9

sights into the system behavior and the underlying urban phenomena linked to city dynamics.10
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INTRODUCTION1

The widespread use of smart card automated fare collection systems by transport operators can2

help in innovative studies on human mobility. In fact, these fare collection systems collect a large3

amount of data related to travels on the whole public transit networks in which they are deployed.4

In this way, they can be viewed as passive sensors for human mobility. Advanced analysis of5

the streams of trips produced by these systems can be used to give insights on human mobility,6

allowing transport operators to provide best quality service. It may also help sociologists and7

urban planners to apprehend the mobility patterns of users within the city. However, the volume8

collected is often large, which raises challenges for their exploitation. Automatic algorithms able9

to extract useful information from these sources has consequently become of great interest.10

This paper deals with a data mining approach applied on Bike Sharing System Origin-11

Destination data, but part of the proposed methodology can be used to analyze other modes of12

transport that similarly generate Dynamic Origin-Destination (OD) matrices. The transportation13

network investigated in this paper is the Vélib’ Bike Sharing System of Paris, deployed since 2007.14

Its access system generates streams of detailed travel information, recorded as Origin-Destination15

data. This work investigates the analysis of sizeable OD-matrices using an advanced statistical16

model called Latent Dirichlet Allocation (LDA). This model, initially developed to process docu-17

ment collections, was adapted to mine such OD-data in order to extract the main features behind18

the spatio-temporal behavior of the BSS. The results provided by this model address the following19

issues:20

• Identify a reduced set of demand profiles, specific to such soft modes of transport. The21

spatial analysis of the resulting patterns can be used to get a better understanding of the22

underlying urban phenomena linked to city dynamics.23

• Build links between the sociological, economical and geographical context of a city and24

the usage of its BSS. BSS operators can both benefit from this kind of analysis to better25

understand the system usage and learn how to improve the service quality of the existing26

system. In the future, such knowledge can be transferred to cities aiming to incorporate27

new BSSs.28

• Get a better understanding of the problem of balancing load of bikes. One of the main29

issues raised by BSS users in recent surveys is the availability of bikes: users are con-30

fronted to empty stations when they want to rent bikes, and full stations when they return31

them back. Redistribution of bikes, which consists of relocating them among the stations,32

is then necessary in most BSSs to compensate the uneven demand of users. This issue33

is traditionally addressed within the field of Operation Research, in which optimization34

policies of bikes redistribution are developed. In this paper, we will focus on a data min-35

ing approach aiming to give indicators on the imbalances of stations, which may be used36

as inputs of advanced Operation Research algorithms.37

The paper is organized as follows: Section 3 is devoted to related work conducted on38

BSS data analysis. In section 4, we detail the data mining approach based on Latent Dirichlet39

Allocation, which was used to achieve the BSS data analysis. The obtained usage patterns as well40

as bike stations unbalances are also analyzed. In Section 5, contextual elements of the Bike Sharing41
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System of Paris are given. Then the results of the proposed methodology applied to the Vélib OD-1

data are presented and discussed in Section 6, as well as new operational indicators, the obtained2

usage patterns and the per-station bike imbalance of the BSS. Conclusion and perspectives are3

finally presented to show how data mining approaches applied on new available data sources can4

lead to innovative modeling and better understanding of urban mobility.5

RELATED WORK6

Several research studies have been conducted on BSS data over the past few years. They generally7

arise from two main fields of research: Operation Research and Data Mining. The works from the8

former field mainly concerns the optimization of the load balancing of bikes, often necessary to9

compensate the uneven demand of bikes. This is usually performed with trucks that move some10

bikes between the stations. The reader interested by this topic can refer to Benchimol et al., Chemla11

et al., Nair et al., Lin and Yang (1, 2, 3, 4).12

Data Mining approaches have been applied in various ways to BSS data. Two main topics13

have been investigated: Clustering and Prediction. The Prediction topic focuses on developing14

models able to forecast the usage of stations or, more generally, the behavior of the transportation15

network in either the short term or the long term (see Froehlich et al., Borgnat et al., Kaltenbrunner16

et al., Michau et al., Vogel et al. (5, 6, 7, 8, 9)). The Clustering topic aims to uncover spatio-17

temporal patterns in the BSS usage, thus highlighting the relationships between time of day, loca-18

tion and usage. This is classically done by partionning the set of stations into clusters of similar19

patterns. However, one of the key differences among the researches concerns how the usage of20

the BSS is described. A major part of the researches on BSSs use public data sampled from the21

operator’s website which consist of station-occupancy statistics, such as the number of available22

bicycles and free slots per-station along a day. The remaining part of the studies directly focuses23

on the mining of anonymized and individual dynamic OD-trips provided by the BSS operators.24

Using station occupancy data collected from the Bicing BSS of Barcelona, Froehlich et al.25

(10) and Froehlich et al. (5) proposed methodologies that identify its main usage patterns and per-26

formed a prediction of station usage within a prediction window ranging from 10 to 120 minutes.27

Lathia et al. (11) investigated how a new user access policy in the London Barclays Cycle Hire28

Scheme affected the system usage across the city, using both spatial and temporal analysis of sta-29

tion occupancy data. Other approaches use trips data to analyze BSS usage, such as the recent30

study of Borgnat et al. (12) on the Lyon Vélo’v BSS data in which different graphs are used to31

extract similar profiles of usage (in terms of arrivals/departure count correlations) between pairs32

of stations during weekdays and weekends, which lead to cluster the stations. Carried out on the33

same BSS, another approach similarly based on a dynamical view of the transportation network34

and proposed by Borgnat et al. (13) aims to uncover communities of stations that exchange bikes35

in a preferential way: the activity between the stations was clustered using graph clustering algo-36

rithm, and exhibited similar exchange dynamics. A statistical approach based on Poisson Mixture37

model has been proposed by Randriamanamihaga et al. (14) in order to discover usage patterns of38

the Vélib’ BSS data on the basis of clustering of flows.39

Other researches using OD-trips data are proposed by Vogel et al., Vogel and Mattfeld40

(9, 15) and aim to identify a reduced set of clusters of stations to get a better understanding of41

the spatial and temporal causes of imbalances between BSS stations. The proposed methodology,42

based on Geographical Business Intelligence process, was successfully applied to data collected43

from the Vienna’s BSS Citybike Wien. It used feature vectors, i.e the per-hour and per-station44
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normalized number of incoming and outgoing trips recorded during weekdays and weekends, to1

describe the stations. Three clustering algorithms (K-Means, Gaussian Mixture Model estimated2

through the EM algorithm and sequential Information-Bottleneck (sIB)) are then compared.3

The approach undertaken in this paper is based on Latent Dirichlet Allocation, a text-4

categorization algorithm initially introduced in the seminal paper of Blei et al. (16). Conversely5

to Montoliu (17), who uses LDA to analyze a BSS using occupancy data, this work deals with6

OD-trips data. The second key differences concerns the formulation of the approach. In Montoliu7

(17), as in most of the previous studies, the clustering-step partitions a set of stations whereas in8

this paper, we aim to extract few global and recurrent demand profiles that describe the behavior9

of the BSS. In order to give a clear overview of the system dynamic, post-processing tools are10

furthermore introduced to analyze the results provided by LDA.11

From a methodological point of view, topic models such as LDA are Probabilistic Gener-12

ative Models that aim to recover the latent structure of a document collection. Although initially13

developed to analyse text documents, Probabilistic Topic Models have been applied to other is-14

sues: Farrahi and Gatica-Perez (18) aims to discover some location-driven routines using mobile15

phone data , Huynh et al. (19) extracts daily human routines from wearable sensors and Niebles16

et al. (20) analyzed trajectory and modeling semantic region on video scenes. These topic models17

are used here to uncover the underlying mobility patterns, assuming the key idea that the usage18

of a mode of transport can be summarized by a finite set of demand profiles, or routines, encoded19

within typical OD-templates. The topic model involved in this paper is the LDA model, which20

background is recalled in the next Section, as well as its re-interpretation in the context of mining21

Dynamic Origin-Destination matrices.22

23

LATENT DIRICHLET ALLOCATION APPLIED ON DYNAMIC OD-MATRICES24

Background on Latent Dirichlet Allocation25

LDA is a three-level Hierarchical Bayesian Model for discrete data. Originally developed to pro-26

cess document collections, it was first introduced in the seminal paper of Blei et al. (16). The basic27

idea is that each document of a given document collection can be efficiently represented as mixture28

of latent topics, since each of them deals with a relative small number of topics that induces the29

use of a specific vocabulary (a semantic field).30

This intuition is formalized into a Statistical Generative Model that involves latent vari-31

ables. One of the simplest way to describe LDA is to detail this generative model i.e. the random32

process by which the model assumes the documents arise. This generative model involves the33

following elements:34

– Corpus: the corpus is a collection of M documents, denoted C = {d1, . . . ,dM}.35

– Documents: Each of the M documents is a bag of words d = {w1, . . . ,wL}. Since the36

size of each bag of words is not fixed, the number of words in the ith document of the37

corpus is neither fixed and is denoted L(i).38

– Words: the words are taken within a fixed vocabulary indexed by {1, . . . , N}. A word39

w is represented by an indicator such that the N-vector w, with wj = 1 and all other index40

set to zero, is the jth word in the vocabulary.41
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In this view, topics are first defined as distributions over a fixed vocabulary. For example1

the Statistic topic would have words about transports such as estimation, likelihood and variance2

with high probability. These distributions of topics, denoted by Λ(k) for a topic k, are supposed to3

be known in advance before any documents has been generated using a Dirichlet distribution D(.)4

of parameter β:5

Λ(k) ∼ D(β), ∀k ∈ {1, . . . , K}. (1)

Thereafter, a document di is generated according to the two-stage process described below:6

1. Choose the proportions of the different topics π(i) for the document, using π(i) ∼ D(α)7

2. For each of the L(i) word of document i:8

(a) Draw a topic T from the distribution over topics π(i) from step (1), using T ∼9

M(1, π(i)). The Multinomial distribution is denotedM(., .)10

(b) Choose a word W from the corresponding distribution over the vocabulary using11

W ∼M(1,Λ(T )).12

This statistical model reflects the intuition that documents exhibit multiple topics. Each13

word of each document is drawn from one of the topics, which one is chosen from the per-14

document distribution over topics preliminary drawn in step (1). For example, this paper may15

have been generated using such a scheme with a distribution over topics mainly concentrated on16

two topics: Transport and Data Mining, which may have induced our specific distributions over17

words. The formal description of this model involves intensively the Dirichlet distribution and its18

conjugate prior, the Multinomial distribution. To sum up, the main quantities of interest produced19

by LDA are:20

• the Λ(k), which characterize each latent topic by a discrete distribution over words and21

encodes the keywords of the topics.22

• the π(i) which summarize each document by a K-vector of topic proportion and encodes23

to a short description of text content.24

Parameters estimation for this model is achieved by the maxisimation of the log probability25

log(p(C|Λ, α)) of the corpus C with respect to the parameters α and Λ. This corpus probability26

may be written with respect to L, the number of words per documents. The corpus C is encoded27

as a sparse count matrices where Cin represent the number of occurrences of word n in document28

i. The maximization of this quantity can be performed using either Variational EM algorithm or29

Gibbs Sampling as in Grün and Hornik (21). A Variational EM algorithm is used instead of an30

ordinary EM algorithm since the expected complete likelihood in the E-step is computationally31

intractable. For an introduction into Variational Inference, the reader can refer to (22) and for32

some applications of these methods on huge corpus, see Hoffman et al. (23). LDA has also been33

extended in several ways to take into account additional aspects such as document co-variables (i.e.34

metadata) as proposed by Mimno and McCallum (24) or topic drift presented in Blei and Lafferty35

(25).36
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LDA adapted to Dynamical OD-data mining1

In order to adapt the previous LDA for text-categorization to our OD-trips analysis, a first assump-2

tion is necessary: we assume that a finite and small set of timestamped OD-trips is sufficiently3

informative. Thus, one way to adapt LDA using the BSS transit data is to make the following4

analogy: (i) the M bags of words are replaced with M bags of successive OD-trips (denoted OD-5

bags) and (ii) the words are replaced with OD-couples. The hidden topics are then interpreted as6

OD-templates and the vector of OD-templates proportions of each OD-bag summarizes, for each7

OD-template, a specific temporal behavior of the system. Let us point that each of these bags8

is equivalent to an OD-matrice that simply counts the occurences of each OD-couple during the9

timespan of the bag. Since the OD-bag (i.e OD-matrices) are sorted temporally, the inputs of the10

LDA algorithm are Dynamical OD-matrices.11

Using this analogy the whole generative process is rewritten in what follows. First, the12

latent demand profiles or OD templates are drawn using a Dirichlet distribution over the set of OD:13

Λ(k) ∼ D(β), ∀k ∈ {1, . . . , K}. (2)

Then, each OD-bag of successive trips i in the set of bags {1, . . . ,M} is similarly generated14

according to the following two-stage process:15

1. Draw the proportions of the templates in the bag using π(i) ∼ D(α)16

2. For each trip of the bag i:17

(a) Draw its template T using T ∼M(1, π(i))18

(b) Draw an OD couple W using the OD template T using W ∼M(1,Λ(T ))19

The generative process did not change at all with this reinterpretation, this is still the classi-20

cal LDA model. It assumes, however, that the system generating the OD is stationary during short21

time frames (one hour for example): in fact, the OD-couples of one particular OD-bag are gen-22

erated by the one same distribution. More formally the random process generating the observed23

OD is supposed to be fixed during a certain period before it may switch into another regime. As24

previously the main output from LDA will be the Λ(k) and the π(i) which can be interpreted in the25

context of dynamical OD matrices analysis as follow:26

• the Λ(k) are the discrete distribution over the OD couples. They can be interpreted as27

typical demand profiles and describe the typical geography of trips.28

• the π(i) summarize each OD matrix by a K-vector of template proportion. Since the29

OD-matrices are temporally sorted, using the OD-templates may give a compact repre-30

sentation of the temporal behavior of the system.31

Regarding the items, the vocabulary are made of OD-couples which can be seen as ele-32

ments of the Cartesian product of two finite sets of stations. This has obviously no impact on the33

model, except that the Multinomial law used to draw one OD-couple is parametrized by a matrix34

of probabilities that sum to one. The OD-bags of trips are described by matrices of counts, denoted35

by C, where Ctij is the number of occurrences of OD couple (i, j) in bag t. In other word, Ct.. is36

a classical OD-matrix.37
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Such a model is promising and is likely to find interesting structure in the BSS data, known1

to be affected by cyclic regularities. The observed behavior of users during the Mondays, between2

8a.m and 9a.m, would for example be quite similar to the behavior of users observed during the3

same time frame, for other weekdays. To keep the analogy, two documents dealing with the same4

topics certainly share common lexical fields. Consequently, the cyclo-stationarity introduced by5

daily activities such as Home → Work → Leisure → Home may therefore be recovered by6

the model, which can give insight of the whole system behavior with only few OD-templates. The7

patterns specific to weekdays and weekends, expected to be hidden in the data, may play a role8

similar to those of the hidden topics behind the observed similarities in documents collections.9

These patterns may be caught by the OD templates: for example, we can think of a Home →10

Work OD-template which has OD-couples leaving from places with high population densities and11

going to places with high employment densities. Eventually, LDA will help to assess the timespan12

over which the system can be considered as stationary and to discern the associated change points.13

Further in this paper, these intuitions are validated through the application of this method-14

ology on trips data recorded by the Vélib’ Bike Sharing System of Paris. Prior to this analysis,15

some contextual elements on the Vélib’ BSS are supplied.16

THE VÉLIB’ BIKE SHARING SYSTEM OF PARIS17

The Bike Sharing System of Paris, called Vélib’ has been deployed since July 2007 and is operated18

as a concession by Cyclocity, a subsidiary of the French outdoor advertising company JCDecaux.19

It offers a non stop service 24/7 and at its debut in 2007, 700 bicycles were spread across 75020

fixed stations. In four years, it has expanded to more than 1200 stations which hire out around21

18,000 bikes throughout the city. Considering the number of annual subscribers, 224,000 and still22

growing, and the average number of 110,000 trips per day, Vélib’ is large-scale and is now one23

of the largest Bike Sharing Systems in the world and the biggest Bike Sharing System in Europe.24

Vélib’ is available mainly in Paris intramuros, some stations being located in the suburbs. At the25

stations, the bikes are locked to the electronically controlled docking points: the whole network26

includes 40,000 of them, inducing from 8 to 70 docking points per station. Regarding the policy,27

a user can purchase a short-term daily or weekly subscription, or a long-term annual subscription28

which allows an unlimited number of rentals. In both cases, the first half hour (or the first 4529

minutes for a long-term subscription) of every individual trip is free of cost.30

The aim here is to obtain some general statistics to highlight the global trends and usage of31

Vélib’. The dataset used to estimate these global statistics and analyze the results of the proposed32

methodology corresponds to one month of trips data recorded in April 2011. This corresponds to33

roughly 2,500,000 trips after data cleansing, which removed the trips with a duration of less than34

one minute and with the same station as point of departure and destination. These trips correspond35

to user misoperation and not to real trips.36

Figure 1 (left) displays the total number of recorded trips, observed over a week, with37

respect to the type of subscription: annual (plotted in blue) or during one day (plotted in red).38

The blue curve shows a repetitive but distinct pattern depending on the type of day. Weekdays39

(Monday to Friday) are marked with peaks at the commutes (8a.m and 6p.m) and during the lunch40

break, whereas the highest volume usage at weekends (Saturday and Sunday) is evenly distributed41

throughout the afternoons. The red curve depicts a totally different pattern with higher activity42

early morning and late afternoon. In addition, considering the volume of displacements during43

Saturdays, Sundays and Mondays, the typical weekend pattern for the one-day users lasts until44
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Tuesday. It is reasonable to assume that these trips are more leisure and recreational oriented.1

These temporal trends of BSS usage can provide information on the sociological characteristics of2

the city. Considering the study carried out by Froehlich et al. (5) on the Barcelona Bicing BSS,3

some sociological differences between Barcelona and Paris can be highlighted: the lunch peak4

occurring at 2p.m in Barcelona Bicing data occurs at 12 noon in the Vélib’ data, reflecting the late5

lunch culture of Spain (resp. the earlier lunch culture of France). Secondly, although Friday is the6

least active day in Barcelona, in France it is not.7
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FIGURE 1 (Left) Total number of displacements, summed over each hour of each day of
the week, from Monday to Sunday. The blue line (resp. red line) corresponds to the dis-
placements carried out by one-year (resp. one-day) subscribers. (Right) Average activity of
stations (number of actions: departure or arrival) per hour with respect to the distance of
the stations from the center of Paris (“Les Halles”).

In addition to these temporal trends, spatial trends closely linked to geographical aspects8

of the city can also be identified. Figure 1(right) shows the average number of observed departures9

and arrivals per hour with respect to the distance from the station to the center of Paris. It is clear10

that the closer the station to the center of Paris, the greater its mean activity. Furthermore, the11

duration and distance of trips can also be used as indicators of Vélib’ usage. As shown in Figure 2,12

half of the trips last less than twelve minutes: this can be linked to the Vélib’ pricing policy (free13

for half an hour).14

These first statistics show the global dynamic of the Vélib’ system. Let us now examine15

the clustering results obtained using the adapted LDA to automatically extract finer details from16

BSS data.17

RESULTS AND DISCUSSION18

Pre-processing and description of the Vélib’ OD-data19

The proposed methodology was applied on two months of trips data recorded by the Vélib’ BSS in20

April and September 2011. These datasets contain the following informations for each trip: station21

of departure, time of departure, station of arrival, time of arrival, type of user subscription (day /22

year). Their are roughly 2 500 000 trips in the April dataset and 3 000 000 trips in the September23
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FIGURE 2 Histogram of trip length in kilometers (left) and of trip duration in minutes
(right). The trips recorded with null distances correspond to round trips.

dataset. The April dataset was used for training (fitting of the model) and September for testing1

and model selection purpose (performance evaluation).2

First, the trips were sorted according to their starting date and then cut in OD-bags of 5 0003

successive trips each. For each OD-bag the number of occurrences of each possible OD-couple was4

computed. Since 1188 stations were operating during these two months, the number of possible5

OD-couples was 11882 ≈ 1, 500, 000: much less were in fact observed during these two months6

since less than 500 000 different OD-couples were observed during April 2011.7

As often in text mining, rare words are removed from the analysis. The OD-couples ob-8

served in less than five OD-bags were similarly removed. This final preprocessing gives us 117 8389

possible OD-couples describing the OD-bags of trips. The number of occurrences of each one of10

these OD-couples in each OD-bag were then the inputs of the Variational EM algorithm used to fit11

the model.12

Model selection13

As usual in clustering, one important element to fix is the number K of OD-templates: models14

with K ranging from two to thirteen OD-templates were therefore fitted and compared, using the15

model Perplexity on test data (September 2011). Such quantity (see Grün and Hornik (21) for16

an introduction) measures to what extend each tested-model is confused by new data. Figure 317

represents this quantity with respect to K, in which a significant drop of the Perplexity value is18

observed when K = 5. Since the Perplexity has to be be minimal to achieve a good description19

of the data, this value of five OD-templates is fixed and seems a good candidate to performs the20

analysis.21

Taking these observations into account now leads us to detail the results obtained with five22

OD templates in the remaining paragraphs.23

Temporal segmentation24

A first way to look at the results obtained by LDA is to plot the template proportions π(i) of the25

OD-bags with respect to time. This is presented in Figure 4 where each OD-bag is depicted with26

a colored stacked bar charts. Each color is, in this Figure, associated with an OD-template: the27

bar height represents the estimated number of trips per hour expected to be drawn from the OD-28
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template, and the bar width corresponds to the time span of the OD-bag.1
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per hour expected to be drawn from each OD-template (one colour per OD-template). The
bars width encodes to the timespan of the OD-bags.

The expected cyclic patterns are clearly visible in this Figure. Five days with the same2
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shape are followed by two days with another shape and so forth, except on April 25 (Easter day)1

which presents a shape similar to a weekend. A typical weekday has the following form: lots of2

red trips occur during the morning pick, followed by a large majority of blue trips. Then magenta3

trips are observed during the second pick of the day and eventually green trips (or a mix of green4

and red trips) are seen during the evening and at night.5

The different colored OD-templates are thus clearly identifiable: the red OD-template cor-6

responds to the Home → Work commute, the blue OD-template to the system behavior during7

Lunch time (denoted by Lunch), the magenta OD-template to the Work → Home commute and8

the green OD-template to the evening behavior (denoted Evening). The last OD-template (brown9

color) is mainly observed during weekends and little during Lunch time the week before Easter:10

it is denoted Spare time. Another important aspect about this segmentation is that the majority11

of the OD-bags can be quite easily associated to a unique OD-template. Although some bags are12

mixtures of OD-template, there are not that many. All the OD-templates being quite easily iden-13

tifiable, we may then gain insight into the system behavior during each of these time period by14

looking at the distribution of each OD-template.15

OD-templates analysis16

Since each OD-template corresponds to a discrete distributions over OD-couples, these distribu-17

tions can be used to describe the behavior of the system in the timespan were the OD-template is18

responsible for the large majority of trips. These distributions are quite big since we analyzed more19

than 1000× 1000 OD-couples. It is therefore interesting to rely on indicators, that are summaries20

of each station, to analyze these distributions. We detail in the next paragraph such summaries.21

Arrival and Departure specificities22

One way to process these distributions is to focus on each OD-template and look at the stations that23

present an increasing number of incoming and outgoing trips, with respect to the mean behavior of24

the system. In other words, we are looking at station that gets or looses more bikes than average in25

OD-template k. To formalize this idea, the station arrival specificity A(k)
s and departure specificity26

D
(k)
s is introduced, for each OD-template k . For an OD-template k, these quantities are defined27

for a station s as:28

A(k)
s = log

(
pa

(k)
s

pags

)
, D(k)

s = log

(
pd

(k)
s

pdgs

)
, (3)

with pa(k)s (resp. pd(k)s ) the probability that a trip ends (resp. starts) in station s according29

to an OD-template k and pags (resp. pdgs) the average probabilities that a trip ends (resp. starts) in30

station s. Each of the OD-template probability is computed using:31

pa(k)s =
∑
j

Λ
(k)
js , pd

(k)
s =

∑
j

Λ
(k)
sj

with Λ
(k)
ij the probability of OD (i, j) to be in template k, estimated using to LDA. The32

global probability pags (resp. pdgs) is the empirical probabilities that a trip ends (resp. starts) in33

station s. It is estimated on the entire dataset using:34
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pags =

∑
j,t Ctjs∑
i,j,t Ctij

, pdgs =

∑
j,t Ctsj∑
i,j,t Ctij

where Ctij is the number of trips of OD-bag t moving from station i to j.1

Under such settings, the stations with a departure (resp. arrival) specificity greater than2

zero experience an increasing number of departures (resp. arrivals) for OD-template k. For each3

OD-template, these indicators offer a natural way to highlight trips generators and attractors. They4

can be easily mapped, as shown in Figure 5 (left) which depicts, through dots of different sizes,5

the arrival specificities on stations, for the latent OD-template House → Work. The departure6

specificities on stations, for the latent OD-templateHouse→ Work, are shown in Figure 5 (right).7

FIGURE 5 Arrival (left) and departure (right) specificities on stations, observed for the
latent OD-template House → Work commute. The dots of different sizes encode the sta-
tions specificities, using a linear scale starting from zero. Stations with negative specificities
are not shown on these maps.

These two maps give a clear overview of the system behavior during the House→ Work8

commute. Peripheral stations have an important departure specificity, whereas stations close to9

“Les grands boulevards” and “Saint-Lazarre” railway station reach important arrival specificities.10

Other BSS stations close from the big railway stations (such as “Montparnasse”, “Austerlitz”,11

“Gare de Lyon”,“Gare du Nord” and “Gare de l’Est”) present high values for both the departure12

and arrival specificities. Since these two maps strongly differ, the imbalance introduced in the13

system during this pattern is important: some stations experience more incoming than outgoing14

trips, and vice versa.15

Similar maps are drawn for the four other latent OD-templates and are presented in Figure16

6. For the Lunch template the two maps are quite similar with high specificities values located17

in the Paris center. Since the departure and arrival maps are similar, this pattern do not introduce18

a big imbalance in the system. The Work → House commute present however a strong asym-19

metry at the opposite from the House → Work commute: the bikers clearly leave the “Grands20

Boulevards” and move to peripheral stations. The observed value are however not as important as21

during the morning rush, and some differences are clearly visible. For instance, stations close to22

the Seine, between the railway stations “Gare de Lyon” and “Austerlitz”, have important departure23

specificities in this template: they were not visible in the maps of the House → Work commute,24
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inducing that the system seems to be partially re-balanced. The Evening maps present an impor-1

tant number of station with a high arrival and departure specificities in the North, the North-East of2

Paris and in a lesser extend in the South-West. Finally, the stations of the center have an important3

departure specificities. The last two maps, which correspond to the Spare time OD-template, are4

quite symmetric and the influence of parks, of the “Canal St Martin” and of important tourist places5

such as the Eiffel Tower, the “Cité des Sciences et de l’Industrie” (a science museum complex),6

the old historical center of Paris are clear. In this template, all these places experience important7

departure and arrival specificities.8

Stations expected balances9

A more direct way to assess the effect of the template on the bike distribution is to look at station10

balances, defined as the number of arrivals minus the number of departures. In fact, if all trips are11

drawn using a unique template k the OD matrix follows a multinomial law of parameters Λ(k). Let12

Ndep denote the number of trips, then:13

OD ∼M(Ndep,Λ
(k)).

The bike balance Bs (Number of arrivals minus Number of departures) for a station s is14

deduced from the previous equation and expresses as:15

Bs =

arrivals︷ ︸︸ ︷∑
j

ODjs−

departures︷ ︸︸ ︷∑
j

ODsj,

The expectation B of the balance, for all the stations, can be computed easily using:16

E[B] = Ndep

(
(Λ(k))t − Λ(k)

)
v (4)

with v = (1, . . . , 1)t. For a given OD-template k, this vector describes how the station17

stocks evolve after Ndep trips are made: a negative expectation will characterize stations which18

lose bikes whereas a positive one will characterize stations which gets bikes. Such statistics can19

easily be mapped as shown in Figure 7, where the station balances for the House → Work20

commute template are represented.21

Such a map summarizes the two view presented in Figure 5 into only one map. The trips22

generators and attractors already observed are clearly visible. From an operational point of view23

these statistics are also relevant since they point the stations which experience bike saturation24

or bike unavailability on a quantitative scale. Regarding this OD-template, one clearly see the25

flow from peripheral stations to more central stations, as shown in Figure 5: the stations of the26

neighborhood “Les grands Boulevards” receive bikes. For instance, one station gets more than 3027

bikes per 10 000 trips made, which corresponds roughly to half the number of trips made during a28

typical week day during the morning rush.29

CONCLUSION30

In this paper, the problem of spatio-temporal analysis of Origin-Destination (OD) data is investi-31

gated within a data mining framework based on an advanced statistical model called Latent Dirich-32

let Allocation (LDA). The proposed methodology, applied to the mining of OD-matrices collected33

on the Vélib’ Bike Sharing System of Paris, has the advantage to identify a reduced set of demand34
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profiles. The obtained results have shown that these demand profiles can be summarized by few1

OD-templates which are typical and temporally localized. Furthermore the proposed methodol-2

ogy may address the issue related to the balancing load of bikes since relevant indicators on the3

imbalances of stations was provided by such an approach to analyze the behavior of the system.4

A perspective to this work is to use the proposed methodology to analyze OD-matrices5

generated by other modes of transport such as railway transport or road traffic data. Further works6

may concern the extension of the LDA model in order to take into account external factors such7

as sociological, economical and geographical context of a city. The long-term goal of this kind8

of research work is to build a dedicated tool able to automatically position and dimension the9

BSS stations considering a given city context which can be useful to extend an existing BSS or to10

implement a new BSS.11
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Lunch

Work → Home

Evening

Spare time

FIGURE 6 Arrival (left column) and departure (right column) specificities on stations, for
four latent OD-templates. The dots of different sizes encode the stations specificities, using
a linear scale starting from zero. Stations with negative specificities are not shown on these
maps.
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FIGURE 7 Latent activity for the OD-template House → Work commute. This Figure
describes how the station stocks evolve after Ndep trips: a negative expectation will charac-
terize stations which lose bikes whereas a positive one will characterize stations which gets
bikes. Here,Ndep = 10 000.


