Spatial manipulation with sf：：сheat sheet

The sf package provides a set of tools for working with geospatial vectors，i．e．points，lines，polygons，etc．

Geometric confirmation

st＿contains（ $\mathrm{x}, \mathrm{y}, \ldots$ ）Identifies if x is within y （i．e．point within polygon）
st＿covered＿by (x, y, \ldots) Identifies if x is
completely within y（i．e．polygon completely within polygon）
st＿covers（ x, y, \ldots ）Identifies if any point from x is outside of y（i．e．polygon outside polygon）
st＿crosses（ $\mathrm{x}, \mathrm{y}, \ldots$ ）Identifies if any geometry of x have commonalities with y
st＿disjoint (x, y, \ldots) Identifies when geometries from x do not share space with y
st＿equals $(\mathrm{x}, \mathrm{y}, \ldots$ ）Identifies if x and y share the same geometry
st＿intersects (x, y, \ldots) Identifies if x and y geometry share any space
st＿overlaps（ $\mathrm{x}, \mathrm{y}, \ldots$ ）Identifies if geometries of x and y share space，are of the same dimension，but are not completely contained by each other
st＿touches（ $\mathrm{x}, \mathrm{y}, \ldots$ ）Identifies if geometries of x and y share a common point but their interiors do not intersect
．st＿within (x, y, \ldots) Identifies if x is in a specified distance to y

Geometric operations

st＿buffer（x，dist，nQuadSegs）Creates a polygon covering all points of the geometry within a given distance
st＿centroid（x，．．．，of＿largest＿polygon） Creates a point at the geometric centre of the geometry st＿simplify（x，preserveTopology，dTolerance） Creates a simplified version of the geometry based on a specified tolerance

Geometry creation

st＿triangulate（x，dTolerance，bOnlyEdges）
\Rightarrow Creates polygon geometry as triangles from point geometry
st＿voronoi（x，envelope，dTolerance，bOnlyEdges）
\Rightarrow 图 Creates polygon geometry covering the envolop of x ，with x at the centre of the geometry
－st＿point（x，c（numeric vector），dim＝＂XYZ＂） Creating point geometry from numeric values
st＿multipoint（ $\mathrm{x}=$ matrix（numeric values in
$\therefore \quad$ rows），dim＝＂XYZ＂）Creating multi point geometry from numeric values
st＿linestring（ $\mathrm{x}=$ matrix（numeric values in
］rows），dim＝＂XYZ＂）Creating linestring geometry from numeric values
st＿multilinestring（x＝list（numeric matricesin
－rows），dim＝＂XYZ＂）Creating multi linestring geometry from numeric values
st＿polygon（ $x=$ list（numeric matrices in rows），
－ $\operatorname{dim}=$＂$X Y Z$＂）Creating polygon geometry from numeric values
st＿multipolygon $(x=$ list（numeric matrices in
－rows），dim＝＂XYZ＂）Creating multi polygon geometry from numeric values
ggplot（）＋
geom＿sf（data＝schools）

geom＿sf（data＝st＿intersection（schools，st＿buffer（subway，1000）））

Spatial manipulation with sf: : сheat sheet

The sf package provides a set of tools for working with geospatial vectors, i.e. points, lines, polygons, etc.

Geometry operations

st_contains (x, y, \ldots) Identifies if x is within y (i.e. point within polygon)
\Rightarrow st_crop(x,y, ..., xmin, ymin, xmax, ymax) Creates geometry of x that intersects a specified rectangle
st_difference(x, y) Creates geometry from x that does not intersect with y
© \Rightarrow st intersection (x, y) Creates geometry of the shared portion of x and y
st_sym_difference(x, y) Creates geometry
\rightarrow - representing portions of x and y that do no intersect
$\rangle \Rightarrow$ st_snap(x, y, tolerance) Snap nodes from geometry x to geometry y geometries into a a single geometry, consisiting of all geometry elements

Geometric measurement

st_area(x) Calculate the surface area of a polygon geometry based on the current coordinate reference system
st_distance($\mathrm{x}, \mathrm{y}, \ldots$, dist_fun, by_element, which)
Calculates the 2D distance between x and y based on the current coordinate system
st_length(x) Calculates the 2D length of a geometry based on the current coordinate system

Misc operations

st_cast(x , to, ...) Change x geometry to a different geometry type
st coordinates (x, \ldots) Creates a matrix of coordinate values from x
st_crs(x, ...) Identifies the coordinate reference system of x
st_join(x, y, join, FUN, suffix, ...) Performs a spatial left or inner join between x and y
st make grid(x, cellsize, offset, n, crs, what) Creates rectangular grid geometry over the bounding box of x
st_nearest_feature(x, y) Creates an index of the closest feature between x and y
st_nearest_points(x, y, \ldots) Returns the closest point between x and y
st_transform(x, crs, ...) Convert coordinates of x to a different coordinate reference system

